
11/13/2002 ©USC-CSE 1

University of Southern California
Center for Software Engineering C S E

 USC

Barry Boehm, USC

CMMI Technology Conference ‘02
November 13, 2002

(boehm@; http://) sunset.usc.edu

CMMI and the Balance of Discipline
and Agility

11/13/2002 ©USC-CSE 2

University of Southern California
Center for Software Engineering C S E

 USC

Outline
• Clausewitz and De Marco: Armor vs. Mobility

– Software CMM and Agile Methods

• Characteristics of Future Systems
– Range of sizes and criticalities
– All need to balance discipline and agility

• Using Risk to Balance Discipline and Agility
– No one-size-fits-all solution

• Representative Future Example: Future
Combat Systems
– Complex system of systems (CSOS)

• Conclusions

11/13/2002 ©USC-CSE 3

University of Southern California
Center for Software Engineering C S E

 USC

• Clausewitz: Armor and mobility
alternate dominance

Greeks
Romans

Vandals, Huns
Franks

Mongols
Castles

Field Artillery
Maginot Line

Panzers

Clausewitz and De Marco: Armor and Mobility

11/13/2002 ©USC-CSE 4

University of Southern California
Center for Software Engineering C S E

 USC

Clausewitz and De Marco: Armor and Mobility

• Clausewitz: Armor and mobility alternate
dominance

• De Marco: Same is true for software methods

Craftsmanship
CMM’s

Agile Methods

• Whither CMMI?

11/13/2002 ©USC-CSE 5

University of Southern California
Center for Software Engineering C S E

 USC

The Agile Manifesto - I

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

That is, while there is value in the items on
the right, we value the items on the left more.

11/13/2002 ©USC-CSE 6

University of Southern California
Center for Software Engineering C S E

 USC

Various Agile Methods Available

• Adaptive Software Development (ASD)
• Agile Modeling
• Crystal methods
• Dynamic System Development

Methodology (DSDM)
* eXtreme Programming (XP)
• Feature Driven Development
• Lean Development
• Scrum

11/13/2002 ©USC-CSE 7

University of Southern California
Center for Software Engineering C S E

 USC

XP: The 12 Practices

• The Planning Game
• Small Releases
• Metaphor
• Simple Design
• Testing
• Refactoring

• Pair Programming
• Collective Ownership
• Continuous Integration
• 40-hour Week
• On-site Customer
• Coding Standards

-Used generatively, not imperatively

11/13/2002 ©USC-CSE 8

University of Southern California
Center for Software Engineering C S E

 USC

The Planning Spectrum

Hackers XP

Adaptive
SW Devel.

Milestone
Risk- Driven

Models
……

Milestone
Plan-Driven

Models

Inch- Pebble
Ironbound
Contract

Software CMM

Agile Methods

CMMI

11/13/2002 ©USC-CSE 9

University of Southern California
Center for Software Engineering C S E

 USC

Agile and Plan-Driven Home Grounds

• Plan-oriented developers;
mix of skills

• Mix of customer capability
levels

• Reliance on explicit
documented knowledge

• Requirements knowable
early; largely stable

• Architected for current and
foreseeable requirements

• Refactoring expensive
• Larger teams, products
• Premium on high-assurance

• Agile, knowledgeable, collocated,
collaborative developers

• Above plus representative,
empowered customers

• Reliance on tacit interpersonal
knowledge

• Largely emergent requirements,
rapid change

• Architected for current
requirements

• Refactoring inexpensive
• Smaller teams, products
• Premium on rapid value

Agile Home Ground Plan-Driven Home Ground

11/13/2002 ©USC-CSE 10

University of Southern California
Center for Software Engineering C S E

 USC

Outline
• Clausewitz and De Marco: Armor vs. Mobility

– Software CMM and Agile Methods

• Characteristics of Future Systems
– Range of sizes and criticalities
– All need to balance discipline and agility

• Using Risk to Balance Discipline and Agility
– No one-size-fits-all solution

• Representative Future Example: Future
Combat Systems
– Complex system of systems (CSOS)

• Conclusions

11/13/2002 ©USC-CSE 11

University of Southern California
Center for Software Engineering C S E

 USC

Information Technology Trends

Traditional Development

• Standalone systems

• Stable requirements

• Rqts. determine capabilities

• Control over evolution

• Enough time to keep stable

• Small to big systems

• Repeatability-oriented
process, maturity models

Current/Future Trends

• Everything connected-maybe

• Rapid requirements change

• COTS capabilities determine rqts.
• No control over COTS evolution

• Ever-decreasing cycle times

• Plus very big systems of systems
• Adaptive process models

11/13/2002 ©USC-CSE 12

University of Southern California
Center for Software Engineering C S E

 USC

The “Separation of Concerns” Legacy

“The notion of ‘user’ cannot be precisely defined,
and therefore has no place in CS or SE.”

– Edsger Dijkstra, ICSE 4, 1979

“Analysis and allocation of the system requirements
is not the responsibility of the SE group but is a
prerequisite for their work.”

– Mark Paulk at al., SEI Software CMM v.1.1,
1993

11/13/2002 ©USC-CSE 13

University of Southern California
Center for Software Engineering C S E

 USC

Resulting Project Social Structure

SOFTWARE

MGMT.

AERO. ELEC. G & C

MFG.

COMM PAYLOAD

I wonder when
they'll give us our
requirements?

11/13/2002 ©USC-CSE 14

University of Southern California
Center for Software Engineering C S E

 USC

The CMMI Software Paradigm
• System and software engineering are

integrated
– Software has a seat at the center table

• Requirements, architecture, and process are
developed concurrently
– Along with prototypes and key capabilities

• Developments done by integrated teams
– Collaborative vs. adversarial process
– Based on shared vision, negotiated

stakeholder

11/13/2002 ©USC-CSE 15

University of Southern California
Center for Software Engineering C S E

 USC

How Much Planning Is Enough?
- A risk analysis approach

• Risk Exposure RE = Prob (Loss) * Size
(Loss)

– “Loss” – financial; reputation; future prospects, …

• For multiple sources of loss:

sources
RE = Σ [Prob (Loss) * Size (Loss)]source

11/13/2002 ©USC-CSE 16

University of Southern California
Center for Software Engineering C S E

 USC

Example RE Profile: Planning Detail
- Loss due to inadequate plans

Time and Effort Invested in plans

RE =
P(L) * S(L)

high P(L): inadequate plans
high S(L): major problems
 (oversights, delays, rework)

low P(L): thorough plans
low S(L): minor problems

11/13/2002 ©USC-CSE 17

University of Southern California
Center for Software Engineering C S E

 USC

Example RE Profile: Planning Detail
- Loss due to inadequate plans

- Loss due to market share erosion

Time and Effort Invested in Plans

RE =
P(L) * S(L)

low P(L): few plan delays
low S(L): early value capture

high P(L): plan
breakage, delay
high S(L): value
capture delays

high P(L): inadequate plans
high S(L): major problems
 (oversights, delays, rework))

low P(L): thorough plans
low S(L): minor problems

11/13/2002 ©USC-CSE 18

University of Southern California
Center for Software Engineering C S E

 USC

low P(L): thorough plans
low S(L): minor problems

Example RE Profile: Time to Ship
- Sum of Risk Exposures

Time and Effort Invested in Plans

R
E

 =
 P

(L
)

*
S

(L
)

low P(L): few plan delays
low S(L): early value capture

high P(L): plan
breakage, delay
high S(L): value
capture delays

Sweet Spot

high P(L): inadequate plans
high S(L): major problems
 (oversights, delays, rework)

11/13/2002 ©USC-CSE 19

University of Southern California
Center for Software Engineering C S E

 USC

Comparative RE Profile:
Plan-Driven Home Ground

Time and Effort Invested in Plans

R
E

 =
 P

(L
)

*
S

(L
)

Mainstream
 Sweet

 Spot

Higher S(L):
large system rework

Plan-Driven
Sweet Spot

11/13/2002 ©USC-CSE 20

University of Southern California
Center for Software Engineering C S E

 USC

Comparative RE Profile:
Agile Home Ground

Time and Effort Invested in Plans

R
E

 =
P

(L
) *

 S
(L

)

Mainstream Sweet
Spot

Lower S(L):
easy rework

Agile Sweet
Spot

11/13/2002 ©USC-CSE 21

University of Southern California
Center for Software Engineering C S E

 USC

Outline
• Clausewitz and De Marco: Armor vs. Mobility

– Software CMM and Agile Methods

• Characteristics of Future Systems
– Range of sizes and criticalities
– All need to balance discipline and agility

• Using Risk to Balance Discipline and Agility
– No one-size-fits-all solution

• Representative Future Example: Future
Combat Systems
– Complex system of systems (CSOS)

• Conclusions

11/13/2002 ©USC-CSE 22

University of Southern California
Center for Software Engineering C S E

 USC

From This...

Small Unit UAV

Other
Layered
Sensors

Network
 Centric

Force

Distributed Fire
Mechanisms

Robotic Direct Fire

Robotic NLOS Fire

Robotic Sensor

Manned C2/Infantry Squad

To This...

Exploit Battlefield Non-Linearities using Technology
to Reduce the Size of Platforms and the Force

Network Centric Distributed Platforms

Future Combat Systems:
A Network-Centric Example

FY00FY00 FY01FY01 FY02FY02 FY03FY03 FY04FY04

Robotics

Maneuver
 C3

Maneuver BLOS
Networked Fires Weapon*

Organic All-Weather
Targeting Vehicle

FY05FY05

T
 &

 E

S
ha

ke
ou

tPreliminary
Design

PDR CDR

Detailed
Design

BuildD
es

ig
n

C
om

pe
tit

io
n

Concept Development /
Modeling and Simulation

AUTONOMY

VISION

COMMAND & CONTROL
COMMS

SOG
review

Government-
Run Experiments

SOG
review

SOG
review

3D PLATFORM

NEAR ALL WEATHER

Unmanned Ground
Vehicle

MOBILITY
DESIGN

IOR 1 IOR 2

B
re

ad
b

o
ar

d

B
ra

ss
b

o
ar

d
All-Weather Surveillance
and Targeting Sensor PRECISION SENSING

ALL WEATHER
R

ed
es

ig
n

 /
T

es
t

LOITER ATTACK

PRECISION ATTACK

BLOS Surveillance &
 Targeting System

Robotic Unmanned
Ground Vehicle

FY06FY06

CHPS

SUO

AFSS

A160
($5.0M)

D
es

ig
n

C
om

pe
tit

io
n

Total Collaborative Effort
to Support FCS

Total Collaborative Effort
to Support FCS

11/13/2002 ©USC-CSE 24

University of Southern California
Center for Software Engineering C S E

 USC

 CSOS Characteristics and Software Benefits

• Flexibility to accommodate
concurrent and incremental
development

• Need for early capabilities

• Rapidly adaptable
• Rapidly upgradeable
• Near-free COTS technology

upgrades

• Need to rapidly accommodate
frequent changes in missions,
environment, technology, and
interoperating systems

• Ease of accommodating
many combinations of
options

• Ease of tailoring various
system and CSOS versions

• Many component systems
and contractors with wide
variety of users and usage
scenarios—including legacy
systems

(relative to hardware)

11/13/2002 ©USC-CSE 25

University of Southern California
Center for Software Engineering C S E

 USC

CSOS Software Benefits, Risks, and Strategies
• Accommodating many combinations of options

– Development speed; integration; cross-system KPP’s
• Accommodating many combinations of systems and

contractors
– Subcontractor specifications, incompatibilities, change

management
• Rapid tailoring and upgrade of many combinations of options

– Version control and synchronous upgrade propagation
• Flexibility, rapid adaptability, incremental development

– Subcontractor chain increment synchronization;
requirements and architecture volatility

• Near-free COTS technology upgrades
– COTS upgrade synchronization; obsolescence; subcontractor

COTS management

• Compound risks

11/13/2002 ©USC-CSE 26

University of Southern California
Center for Software Engineering C S E

 USC

How Soon to Define Subcontractor Interfaces?
Risk exposure RE = Prob(Loss) * Size(Loss)

-Loss due to rework delays

Time spent defining & validating architecture

RE =
P(L) * S(L)

Many interface defects: high P(L)
Critical IF defects: high S(L)

Few IF defects: low P(L)
Minor IF defects: low S(L)

11/13/2002 ©USC-CSE 27

University of Southern California
Center for Software Engineering C S E

 USC

How Soon to Define Subcontractor Interfaces?
- Loss due to rework delays

- Loss due to late subcontact startups

Time spent defining & validating architecture

RE =
P(L) * S(L)

Few delays: low P(L)
Short Delays: low S(L)

Many delays: high P(L)
Long delays: high S(L)

Many interface defects: high P(L)
Critical IF defects: high S(L)

Few IF defects: low P(L)
Minor IF defects: low S(L)

11/13/2002 ©USC-CSE 28

University of Southern California
Center for Software Engineering C S E

 USC

Time spent defining & validating architecture

RE =
P(L) * S(L)

Many delays: high P(L)
Long delays: high S(L)

Sweet
Spot

Many interface defects: high P(L)
Critical IF defects: high S(L)

Few IF defects: low P(L)
Minor IF defects: low S(L)

How Soon to Define Subcontractor Interfaces?
- Sum of Risk Exposures

Few delays: low P(L)
Short delays: low S(L)

11/13/2002 ©USC-CSE 29

University of Southern California
Center for Software Engineering C S E

 USC

How Soon to Define Subcontractor Interfaces?
-Very Many Subcontractors

RE =
P(L) * S(L)

Higher P(L),
S(L): many more IF’s

Mainstream
 Sweet

 Spot

High-Q
Sweet
Spot

Time spent defining & validating architecture

11/13/2002 ©USC-CSE 30

University of Southern California
Center for Software Engineering C S E

 USC

Percent of Project Schedule
Devoted to Initial Architecture
and Risk Resolution

Added Schedule Devoted to
Rework (COCOMO II RESL
factor)

Total % Added Schedule
Percent
of Time
Added

How Much Architecting is Enough: A COCOMO II Analysis

-KSLOC: Thousands of Source Lines of Code.

11/13/2002 ©USC-CSE 31

University of Southern California
Center for Software Engineering C S E

 USC

Conclusions
• Future systems need to balance discipline and

agility
– Need both high dependability and high adaptability

• Can interpret CMMI in two ways
– Rigorous, heavyweight, one-size fits-all standard
– Risk-driven combination of discipline and agility

• Need ability to accommodate agile methods
– Liberal as well as literal compliance interpretations
– Risk-driven content of processes and artifacts
– Outreach to commercial sector

