
page 1

Pittsburgh, PA 15213-3890

© 2002 by Carnegie Mellon University

CMMI®
 : A Knowledge Infrastructure

November 12, 2002

Stephen E. Cross, Ph.D.
Director and CEO
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

® CMMI is registered with the U.S. Patent and Trademark Office
 by Carnegie Mellon University

© 2002 by Carnegie Mellon University page 2

This Briefing Refers to the Following
Service Marks and Trademarks

® Capability Maturity Model, Capability Maturity Modeling,
 CMM Integration; CMMI; are registered in the U.S.

Patent and Trademark Office
 by Carnegie Mellon University.

SM IDEAL; Personal Software
 Process; PSP; SCAMPI; SCAMPI Lead Assessor;
 SCAMPI Lead Appraiser; Team Software Process; and
 TSP are service marks of Carnegie Mellon University.

© 2002 by Carnegie Mellon University page 3

Carnegie Mellon SW-CMM
Announcement, 10/28/02

© 2002 by Carnegie Mellon University page 4

Carnegie Mellon CMM Facts
A New SW-CMM Will Not Be Released
• The SEI is committed to the CMMI Product Suite.
• The sunset of the SW-CMM will proceed as planned.
• No one can release a new SW-CMM version without SEI

permission.

CMMI Supports Software and IT Organizations
• Many software and IT organizations are already using CMMI.
• CMMI for Software (CMMI-SW) was released in August 2002.
• Development of CMMI interpretive guidance has been

initiated.

The SEI Is the Steward of CMM Intellectual Property
• We support the transition of CMMs into broad use.
• We meet the needs of the community with CMM-based

products.
• We maintain high quality in all CMM-based products.
• We ensure CMM-based products are reliable, valid, and

consistent.

© 2002 by Carnegie Mellon University page 5

FAQs About Sunsetting the SW-CMM
• How does this relate to the CMMI work at the SEI?
• What is a derivative work?
• Will a new version of the SW-CMM be released?
• How does CMMI support software only and information

technology (IT) organizations?
• How are Carnegie Mellon, the SEI and ISRI related?
• Can another organization release a new version of the

SW-CMM?
• What responsibilities does the SEI have as steward?
• What are the top benefits of make the transition from

SW-CMM to CMMI?
• What are the products that the SEI will continue to

support? What items will not be supported, and why?

© 2002 by Carnegie Mellon University page 6

CMMI Q&A Sessions in SEI Booth
Tuesday, November 12, 2002 7:30 am - 8:30 am

10:30 am -12:00 noon

2:30 pm - 6:00 pm

Wednesday, November 13, 2002 7:30 am - 8:30 am

10:00 am -12:00 noon

3:00 pm - 3:15 pm

Thursday, November 14, 2002 7:30 am - 8:30 am

10:00 am -12:00 noon

© 2002 by Carnegie Mellon University page 7

 CMMI: A Knowledge Infrastructure

Knowledge - the fact or condition of knowing something
with familiarity gained through experience or association

Experience - practical knowledge, skill, or practice
derived from direct observation of or participation in events
or in a particular activity

Engineering - the design and manufacture of complex
products

Infrastructure - the underlying foundation or basic
framework (as of a system or organization)

Ref: Merriam-Webster, http://www.m-w.com/cgi-bin/dictionary

© 2002 by Carnegie Mellon University page 8

What I’d Like to Share With You

A vision – what great engineering looks like

Some thoughts on the past, the present, and the future

Three key ideas for the engineering of complex (software
intensive) products

A case study

Myths about the CMMI

© 2002 by Carnegie Mellon University page 9

So Steve

What Does Great Engineering
Look Like?

© 2002 by Carnegie Mellon University page 10

Consider This Example from the
Building Trades: A “Four-Hour House”

 Building Industry Association, San Diego, CA, 1997.

Start at 0 t0 + 2hrs 45 min

© 2002 by Carnegie Mellon University page 11

Observations

Work is planned

Work is measured

Design before build

Analyze the design

Commit to the design

Create team experience before, not during, the build

Reuse knowledge of past designs and builds

© 2002 by Carnegie Mellon University page 12

What I’d Like to Share With You

A vision – what great engineering looks like

Some thoughts on the past, the present, and the future

Three key ideas for the engineering of complex (software
intensive) products

A case study

Myths about the CMMI

© 2002 by Carnegie Mellon University page 13

The Past
era of “manufacturing in quality”

Augustine's 12th law
 (it costs a lot of money to build bad products)

Crosby's Quality Management Maturity Grid
 (historical footnote – CMM’s genesis was manufacturing)

© 2002 by Carnegie Mellon University page 14

Quality Management Maturity Grid

“We know
why we don’t
have quality
problems.”

“We
routinely
prevent
defects
from
occurring.”

“We are
identifying and
resolving our
quality
problems.”

“Must we
always have
quality
problems?”

“We don’t
know why
we have
quality
problems.”

Summation
of company
quality
posture

Stage 5:
Certainty

Stage 4:
Wisdom

Stage 3:
Enlightenment

Stage 2:
Awakening

Stage 1:
Uncertainty

Management
Categories

Crosby, P. Quality is Free: The Art of Making Quality Certain. New York: McGraw-
Hill, 1979.

Reported:
2.5%
Actual: 2.5%

Reported:
6.5%
Actual: 8%

Reported: 8%
Actual: 12%

Reported:
5%
Actual: 18%

Reported:
unknown
Actual: 20%

Cost of
quality as %
of sales

© 2002 by Carnegie Mellon University page 15

The Past
era of “manufacturing in quality”

Augustine's 12th law – Law of Counter Productivity
 it costs a lot of money to build bad products

Crosby's Quality Management Maturity Grid
 (historical footnote – CMM’s genesis was manufacturing)

CMM for Software
 focus was quality software processes

© 2002 by Carnegie Mellon University page 16

The Present
era of “engineering in quality”
CMMI enables a paradigm change
• systems and software engineering have merged
• focus is on

process and product quality
business results
“engineering in quality”

CMMI is being adopted quickly

Companies in key markets are adopting the CMMI
• defense
• aerospace
• automotive
• entertainment
• telecommunications

© 2002 by Carnegie Mellon University page 17

Implication for software engineers

 Quality software

a process, product, and business focus

Software quality

a process focus

© 2002 by Carnegie Mellon University page 18

The Future
era of “innovating in quality”
Unprecedented engineering challenges

Customers demanding (quality) products faster and
cheaper

Management expects higher productivity

Engineering fields continually evolve ... and merge

Organizations are dynamic

Knowledge and experience must be shared

 The future is now!

CMMI is our knowledge infrastructure

© 2002 by Carnegie Mellon University page 19

What We Need To Do

Adopt

Use

Innovate

Share

© 2002 by Carnegie Mellon University page 20

What I’d Like to Share With You

A vision – what great engineering looks like

Some thoughts on the past, the present, and the future

Three key ideas for the engineering of complex (software
intensive) products

A case study

Myths about the CMMI

© 2002 by Carnegie Mellon University page 21

Key Idea #1: Move to the Left

Software and systems engineering have merged.

“Systems engineering consists of two significant disciplines:
the technical knowledge domain in which the systems
engineer operates, and systems engineering management.”

Ref: Systems Engineering Fundamentals, Defense Acquisition University Press, Dec 2000.
http://www.dsmc.dsm.mil/pubs/gdbks/pdf/SEFGuide12-00.pdf

© 2002 by Carnegie Mellon University page 22

Process Input
• Customer Needs/Objectives/
 Requirements (RD)

- Missions
- Measures of Effectiveness
- Environments
- Constraints

• Technology Base (TS)
• Output Requirements from Prior
 Development Effort (RM,RD)
• Program Decision Requirements (DAR)
• Requirements Applied Through
 Specifications and Standards (TS,RD)

Requirements Analysis
• Analyze Missions & Environments (RD,TS)
• Identify Functional Requirements (RD,TS)
• Define/Refine Performance and Design
 Constraints (RD, REQM, TS)

Functional Analysis/Allocation
• Decompose to lower level functions (RD, TS)
• Allocate Performance and other Limiting Requirements to All Functional Levels (RD, TS)
• Define/Refine Functional Interfaces (Internal/External) (RD,REQM,TS,PI)
• Define/Refine/Integrate Functional Architecture (RD,REQM,TS)

Synthesis
• Transform Architectures (Functional & Physical (RD,TS)
• Define Alternative System Alternatives, Configuration Items
 and System Elements (TS,RD,CM)
• Select Product and Process Solutions (TS)
• Define/Refine Physical Interfaces (Internal/External)(TS,PI)

• Trade-Off Studies (RD,TS)
• Effectiveness Analysis (RD,TS,MA)
• Risk Management (RSKM)
• Configuration Management (CM)
• Interface Management (PI)
• Data Management (PP)
• Performance Measures (MA,QPM)

SEMS
TPM

Technical Reviews

System Analysis
And Control
(Balance)

Related Terms:
Customer = Organizations responsible for Primary Functions
Primary Functions = Development, Productions/Construction, Verification

 Deployment, Operations, Support, Training, Disposal
Systems Elements = Hardware, Software, Personnel, Facilities, Data, Material

 Services, Techniques

Process Output (TS, CM,RD,DAR)
• Development Level Dependent

-Decision Database
-System/Configuration Item
 Architecture
-Specifications & Baselines

(VER)

Design Loop

(VAL)

)

Requirements Loop

Ref: Systems Engineering Fundamentals, Defense Acquisition University Press, Dec
2000.http://www.dsmc.dsm.mil/pubs/gdbks/pdf/SEFGuide12-00.pdf

© 2002 by Carnegie Mellon University page 23

Key Idea #2: Never Make the
Same Mistake Twice
Continuously improve
(e.g., learning from mistakes)

Quality counts
(e.g., security correlation)

Advocate that your suppliers use disciplined
practices and insist that they provide high-quality
engineered products

© 2002 by Carnegie Mellon University page 24

Personal Software Process Results

11109876543210
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Design

Code

Compile

Test

Time Invested Per (New and Changed) Line of Code

Program Number

M
ea

n
M

in
ut

es
 S

pe
nt

 P
er

 L
O

C

Ref: W. Hayes, J. Over, Personal Software Process (PSP): An Empirical Study of the Impact of
PSP on Individual Engineers (CMU/SEI-97-TR-001). See:http://www.sei.cmu.edu/publications

© 2002 by Carnegie Mellon University page 25

Team Software Process Results

Average Schedule Deviation - Range

-20%
0%

20%
40%
60%
80%

100%
120%
140%
160%

Pre TSP/PSP With TSP/PSP

Average Effort Deviation - Range

-20%

0%

20%

40%

60%

80%

100%

120%

Pre TSP/PSP With TSP/PSP

Defects/KLOC in Acceptance Test - Range

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pre TSP/PSP With TSP/PSP

System Test Duration (Days / KLOC) - Range

0

1

2

3

4

5

6

7

Pre TSP/PSP With TSP/PSP

http://www.sei.cmu.edu/publications/documents/00.reports/00tr015.html

© 2002 by Carnegie Mellon University page 26

Key Idea #3: Reuse Everything

Use of a
common

asset base
in production of a related

set of products

Architecture Production Plan Scope Definition
Business Case

© 2002 by Carnegie Mellon University page 27

SEI Program Snapshot

CMMI is also a technology transition infrastructure

SEI purpose – help others make measured improvements
in their software engineering practices

SEI focus areas
• Process management practices
• Acquisition practices
• Team training
• Architecture analysis
• COTS evaluation and integration
• Design practices (security, real-time)
• Measurement practices

© 2002 by Carnegie Mellon University page 28

What I’d Like to Share With You

A vision – what great engineering looks like

Some thoughts on the past, the present, and the future

Three key ideas for the engineering of complex (software
intensive) products

A case study

Myths about the CMMI

© 2002 by Carnegie Mellon University page 29

Case Study: Cummins, Inc.
Moved to left

Never made same mistake twice

Reused everything

© 2002 by Carnegie Mellon University page 30

Cummins, Inc.

World’s largest
manufacturer of
large diesel engines
(over 200 hp)

25,000 employees

350 controls and
electronics engineers

$7B annual sales

© 2002 by Carnegie Mellon University page 31

In 1993, Cummins Had a Problem
The market was demanding new products.
• six engine projects were underway
• another 12 were planned

Each project had complete control over its development
process, architecture, even choice of language. Two
were trying to use object-oriented methods.

Ron Temple (VP in charge) realized that he would need
another 40 engineers to handle the new projects -- out of
the question.

Temple realized this was no way to do business. In May
1994 he halted all the projects.

© 2002 by Carnegie Mellon University page 32

Key Insights
Applied key product line practices

Organization management (e.g., business case)

Engineering practices (e.g., configuration
management)

Software engineering practices (e.g., architecture
definition and evaluation, components, mining legacy
assets)

Investment strategy to create and maintain core assets

A disciplined, process-based culture already in place

Top management commitment

© 2002 by Carnegie Mellon University page 33

Cummins’ Results

In early 1995, the product was launched on time (relative
to re-vamped schedule) with high quality. Others followed
-- on time and with high quality.

Achieved a product family capability with a breathtaking
capacity for variation, or customization
• 9 basic engine types
• 4 - 18 cylinders
• 3.9 - 164 liter displacement
• 12 kinds of electronic control modules
• 5 kinds of microprocessors
• 10 kinds of fuel systems
• diesel fuel or natural gas

© 2002 by Carnegie Mellon University page 34

Quantitative Results 1

20 product groups launched, which account for over 1,000
separate engine applications

75% of all software, on average, comes from core assets

Product cycle time drastically decreased (e.g., from 250
person-months to a few person-months).

Projects are more successful (e.g., before: 3 of 10 were on
track, 4 were failing, and 3 were on the edge;
now: 15 of 15 are on track)

Customer satisfaction is high (e.g., productivity gains
enable new features to be developed and quickly
introduced)

© 2002 by Carnegie Mellon University page 35

Quantitative Results 2

Achieving this flexibility without the product line approach
would have required 3.6 times the current staff.

Supported
Components

1992 1993 1994 1995 1996 1997 1998

Electronic control
modules (ECMs)

3 3 4 5 5 11 12

Fuel Systems

2 2 3 5 5 10 11

Engines

3 3 5 5 12 16 17

Features * ECM 60 80 180 370 1100 2200 2400

© 2002 by Carnegie Mellon University page 36

What I’d Like to Share With You

A vision – what great engineering looks like

Some thoughts on the past, the present, and the future

Three key ideas for the engineering of complex (software
intensive) products

A case study

Myths about the CMMI

© 2002 by Carnegie Mellon University page 37

Myths About the CMMI
It’s too big, takes too long, costs too much ….

Ratings are meaningless, hence CMMI is useless

It is inconsistent with agility, evolutionary development,
cycle time reduction, <your favorite new buzzword> …

It is not useful for software developers

© 2002 by Carnegie Mellon University page 38

Summary

Systems and software engineering have merged

Three key ideas
- Move to the left
- Reuse everything
- Never make the same mistake twice

Trends in engineering mean we need a common
framework upon which to create, share, and use
engineering knowledge

CMMI provides this knowledge infrastructure

