

Weapons & Materials Research Directorate

37TH ANNUAL GUN & AMMUNITION SYMPOSIUM & EXHIBITION Panama City, Florida, April 14-18, 2002

XM-80 GRENADE POINT BURST REFERENCE AND CASING EXPANSION INVESTIGATIONS

GARY L. BOYCE

U.S. ARMY RESEARCH LABORATORY **AMSRL-WM-TC** ABERDEEN PROVING GROUND, MARYLAND 21005 (410) 278- 3129 FAX (410) 278-6564

Outline

Weapons & Materials Research Directorate

- Objectives
- Background
- Phase I & II Experiments
- Observations
- Conclusions

Background Example of Arena Testing

Weapons & Materials Research Directorate

Terminal Effects Division

All angles on collection panel are measured from reference point

Background (cont.)

CARTRIDGE, 105mm, DPICM, XM915/XM916

Weapons & Materials Research Directorate

Terminal Effects Division

Keith E. Van Biert, "Development of the 105mm XM915/XM916 Projectiles, Design, Testing and Analysis", ARFSD-TR-91021, August 1991.

Objectives

Weapons & Materials Research Directorate

Terminal Effects Division

• PHASE I:

Validate a "reference plane" and a "reference origin" establishing a standard operating procedure for XM-80 grenade arena testing

Observe XM-80 grenade shell expansion

• PHASE II:

Observe the grenade shell expansion, section of fragments and individual fragment for orientation

Experimental Approach

Weapons & Materials Research Directorate

Terminal Effects Division

• PHASE I

Use radiographic diagnostics to establish the fragmenting XM-80 grenade reference plane with respect to the horizontal plane

• PHASE II

Use radiographic system and unique shielding method to observe selected portion of the XM-80 fragment expansion

XM-80 Grenade

Weapons & Materials Research Directorate

Phase I Experimental Arrangement

Phase I Experimental Arrangement

Weapons & Materials Research Directorate

Terminal Effects Division

XM – 80 Shell Expansion

Weapons & Materials Research Directorate

Rd 412

 $T_1 = 30 \ \mu s$

$$T_2 = 60 \ \mu s$$

Phase II Experimental Arrangement

Formed Fragment Observations

Experiment Arrangement & Post-mortem

Weapons & Materials Research Directorate

Radiographic Observations

Composite Image Rd 416

Weapons & Materials Research Directorate

Majority of Fragment Groupings

Weapons & Materials Research Directorate

Radiographic Observations

Composite Image Rd 419

Weapons & Materials Research Directorate

Terminal Effects Division

Styrofoam

 $T_5 = 1021 \, \text{ms}$

 $T_4 = 694 \text{ms}$

 $T_3 = 440 \text{ms}$

 $T_2 = 186 ms$

 $T_1 = 30 \text{ms}$

Grenade supported on 50.8mm Styrofoam 25.4mm grid

Radiographic Observations

Weapons & Materials Research Directorate

Terminal Effects Division

$$T_5 = 1022 \text{ ms}$$

$$T_4 = 695 \text{ ms}$$

$$T_3 = 440 \text{ms}$$

$$T_2 = 186 \text{ ms}$$

$$T_1 = 30 \text{ ms}$$

Grenade supported on 25.4mm RHA 25.4mm grid

Grenade Support Foam vs Steel

Weapons & Materials Research Directorate

Terminal Effects Division

Grenade supported on 50.8mm Styrofoam

Grenade supported on 25.4mm RHA

$$T_1 = 30 \text{ms}$$

$$T_2 = 186 ms$$

Fragment Speed and Orientation

Weapons & Materials Research Directorate

Rd No.		Distance from Reference Point (RF) (m)			Maximum Speed (m/s)			Orientation Angle from RF (degrees)
411(casing)		0.1312	(<i>III</i>)	_	1236	(<i>IIU/S)</i>	_	(uegrees)
412(casing)		0.0857	_	_	1171	_	_	-
416	Frag 1	0.4919	0.7587	1.0278	1194	1155	1128	89.1
	Frag 2	0.4697	0.7273	0.9884	1148	1115	1095	80.8
418	Frag 1	0.5139	0.8029	1.1660	1182	1132	1116	89.7
	Frag 2	0.5014	0.7889	1.1550	1168	1141	1129	82.9
419	Frag 1	0.5186	0.8173	1.1990	1201	1179	1171	86.9
	Frag 2	0.4733	0.7464	1.0994	1110	1093	1088	81.3
420	Frag 1	0.4993	0.7826	1.1340	1145	1111	1075	88.7
	Frag 2	0.4966	0.7764	1.1310	1145	1097	1085	84.7
421	Frag 1	0.5349	0.8383	1.2255	1218	1191	1185	88.4
	Frag 2	0.5087	0.7957	1.1627	1170	1140	1137	81.3

Cumulative Measured Fragment Orientation

Maximum Fragment Velocity as a Function of Distance

Distance (m)

Summary Grenade at T = 0 ms

Weapons & Materials Research Directorate

Conclusion

Weapons & Materials Research Directorate

Terminal Effects Division

Phase I (Establish a Reference Line and Point)

- **Reference plane** is 31.75mm (1.25") from the bottom of grenades' skirt
- **Point burst reference** is located at the intersection of the reference plane and the axis of symmetry

Phase II (Observe Grenade Expansion)

- Grenade's shell expansion is similar when supported by foam or steel
- Fragmentation is separated into 2 major groups
 - Group 1 is directed at 85° to 90°
 - Group 2 is directed at 80° to 85° due to the tapering of explosive / Taylor angle
- Minimum number of fragments are directed at 90° to 95°, due to corner effects