

37th Annual NDIA Gun & Ammunition Symposium April 15-17, 2002

105mm M393A2 Terminal Ballistic

Performance Against

Concrete Wall

PRESENTED BY:

Tim Farrand* & Gary Boyce

U.S. Army Research Laboratory

SPONSORED BY:

Roger Joinson - OPM-TMAS

& PM-BCT

SUPPORTED BY:

Steve McClung - ATC (TEST DIRECTOR)

Outline

Weapons & Materials Research Directorate

- Objective/Plan
- Performance Tests
 - Phase I (Normal Impact Utility)
 - Phase II (Normal Impact at Range)
 - Phase III (Oblique Impacts)
- Summary

Wall Breaching Test Objective/Plan

Weapons & Materials Research Directorate

GOAL: Produce a man-sized hole in a double reinforced concrete wall

Phase I – Evaluate utility of 105mm HEP round to be used as a Concrete wall breaching munitions

Plan: Determine spacing between shots to achieve man-sized hole via numerous shots at 61 meters range

Phase II – Evaluate effect of range on hole size

Plan: 1 shot each at 500m and 1000m with wall at 0 degrees

Phase III – Evaluate effect of obliquity on hole size and estimate ricochet angle Plan: Vary wall angle with 2-3 shots at each angle ($\sim q$ -50)

Test Set-Up

M1

61 m (200')

8" Double Reinforced

2.4 m

105mm M393A2 HEP-T

Weapons & Materials Research Directorate

Phase I

Utility of M393A2 for Wall Breaching

Impact on Wall Shot #1

Weapons & Materials Research Directorate

First Shot (M393A2 HEP)

Weapons & Materials Research Directorate

Impact point was between Rebar Hole size is 23" x 26"

Second Shot on Wall (M393A2 HEP)

Weapons & Materials Research Directorate

Impact was 28" below center of hole Hole size is 47" x 20"

Bottom of hole ~8" from ground

Ideal Impacts of M393A2 HEP

Weapons & Materials Research Directorate

Ideal Impact Locations

Height on Wall

Spacing between shots

Hole Size as a Function of Impact Separation for HEP

Normal Impact at 61 meters

Weapons & Materials Research Directorate

<u>Phase II</u>

Evaluate Variance in Performance with Range

(download propellant to simulate impact velocity at range)

Plan: 1 shot each at 500m and 1000m with wall at 0 degrees (normal impact)

M393A2 HEP Velocity Profile as Function of Range

Weapons & Materials Research Directorate

Postmortem Results Wall Front Scarring

Weapons & Materials Research Directorate

Hole Size as a Function of Range

HOLE SIZE DECREASES WITH RANGE:

Lower KE impacting wall Round does not penetrate wall as deeply before it detonates, so effect of detonation is not as great – more on exterior of wall

Weapons & Materials Research Directorate

Phase III

Determine variance in Performance with Impact Obliquity

Rotate wall to desired obliquity – all at 61meters range

Plan: Vary wall angle with 2-3 shots at each angle (~theta-50)

Expected Impact Obliquity Based on Street Dimensions

May force engagements to be on corners or straight down to end of the streets

Test Set-up Phase III (Nomenclature)

Weapons & Materials Research Directorate

Movie of 45 Degree Shots

Weapons & Materials Research Directorate

Postmortem Results (45° Shots)

Weapons & Materials Research Directorate

Hole Opening 17.75" x 22"

Hole Opening 20" x 27"(bottom) / 19.5" x 21"(top)

Postmortem Results (60° Shots)

Weapons & Materials Research Directorate

Hole Opening 13.75" x 13"

Hole Opening 23" x 24"(bottom) / 21" x 27"(top)

REBAR

Hole Opening 29.5" x 58"(left)/ 13" x 64.5"(right)

Postmortem Results (80° Shots)

⊿ 18"

Weapons & Materials Research Directorate

Hole Opening 23.75" x 14"(top)/21.5" x 9"(bottom)

Movie of Deflection at 85°

Weapons & Materials Research Directorate

Postmortem Results (85° Shots)

Weapons & Materials Research Directorate

Wall Back

Projectile ricocheted off the wall and detonated down range

Phase III Results (Single Shot)

Greater than 45°, more vertical rebar removed (larger horizontal hole) because of the angle, projectile has a greater probability of hitting vertical rebar and creating a wider hole

WALL BREACH SUMMARY

Weapons & Materials Research Directorate

- HEP round will produce sufficient hole size under ideal conditions in 2 shots
 - close range, height on wall, normal obliquity
- Hole size is dependent on impact location with respect to rebar
- Hole size decreases with increased range
 - projectile functions further into wall at closer ranges
- Hole size decreases with increased impact obliquity
 - greater number of rebar to be impacted at obliquity

QUESTIONS

Weapons & Materials Research Directorate

