This Briefing is Unclassified

Investigation of MIC Materials for Electrically Initiated Lead Free Primers

Lee Hardt NAVAIR Weapons Division

(760) 939-7650 HardtLR@navair.navy.mil

NDIA Guns and Ammo Symposium April 2002

This Briefing is Unclassified

BACKGROUND / NEED

Background

- MIC Metastable Interstitial Composites, Nanometer Particles - High Reaction Rates
- Patent 5,717,159- Lead Free MIC Percussion Primer -Phil Dixon & Don Thompson (China Lake) & Dr. Joe Martin (LANL)
- Army Small Caliber MIC Primer In Development
- Need 20mm and 30mm Electrically Initiated Ammo In-Service
 - Lead Styphnate 1700 Pounds / Year
 - Barium Nitrate 2000 Pounds / Year

PERFORMERS

Team Lead - Ron Jones
Material Safety Characterization - Anita Piaz

Primer Fabrication and Test - Larry Johnson, Brent Reese, Tim Tinkle, Lee Hardt

AUR Fabrication and Test - C.J. Toombs, Jim Denny, (Art Clayson, Bob Gould & Jesse Cavazos - Sverdrup)

Bridgewire Design & Fabrication - Don Thompson, Danny Wooldridge

Materials Engineering & Chemistry - Dr. Kelvin Higa, Phil Dixon, Dr. Curtis Johnson

Nano Material Production - Dr. Chris Aumann (Technanogy)

Others - Picatinny / LANL / LCAAP / GDOTS

OBJECTIVE / APPROACH

- Objective Demonstrate the Feasibility of Adapting MIC Percussion Mix to Electrically Initiated Primers for Use in Medium Caliber Ammunition
- Approach
 - Make Primer Mix Conductive by Adding Carbon / Acetylene
 Black to Basic Lead Free MIC Percussion Primer Mix
 - Build "Bridgewire" Primers
 - Conduct Component Level (Primer) and Cartridge (AUR)
 Firings

Unclassified

Electric Primer

Primed Cartridge Case

Component Level Test

Primer Electrical Resistance Measurement & Test Firing Fixture

M52 Component Level Test

M52A3B1 (Lead Styphanate) Primer (12 Test Items)

First Light Maximum Light 78-96 microsec 550-628 microsec

M52 Video

M52 Video (Slow Motion)

1(

MIC Component Level Test

 $MIC Primer - AI + MoO_3 + AB$

First Light Maximum Light ~150 microsec 1056 microsec

MIC Primer Video

Unclassified

SERDP MIC Primer Video (Slow Motion)

M52 Vs. MIC Output

MIC Component Level Tests

		Function :	
		<u>CM</u>	BW
Sample 1:	AI + MoO ₃	N/A	Yes
Sample 2:	$AI + MoO_3 + CB (1.2\%)$	No	Yes
Sample 3:	$AI + MoO_3$	N/A	Yes
Sample 4:	$AI + MoO_3 + CB (2.5\%)$	No	Yes
Sample 5:	$AI + MoO_3 + CB (4.1\%)$	No	Yes
Sample 6:	$AI + MoO_3 + AB (3.3\%)$	Yes *	Yes
Sample 7:	AI + CuO + AB (3.4%)	No	N/A
Sample 8:	$AI + MoO_2 + AB (3.4\%)$	Yes *	Yes

CM - Conductive Mix, BW - Bridgewire CB - Carbon Black, AB - Acetylene Black

^{*} Did not function after aging

Stability

Observed Electrical Resistance Changes - Conductive Mix Configuration

Material Loading Pressure	Elec Res (K Ohms) (20 Nov 01)	Elec Res (K Ohms) (28 Nov 01)	Elec Res (K Ohms) (10 Jan 02)
1.0	19.3	7.9	10200
3.0	4.1	3.6	9140
6.0	2.8	2.3	4520

AUR Tests

Conducted 4 successful AUR firings in a Mann Barrel (Bridgewire Design) (No Action Time or Pressure Data)

SUMMARY / FUTURE

- Accomplishments Successfully Demonstrated Two Different Configurations of Electrically Initiated Primers
 - Conventional Conductive Mix Design W/ Simple Substitution of MIC Materials for Lead Styphanate Primary Explosive
 - Non-Conventional Design Utilizing Bridgewire Initiation and MIC Materials
- Plan for 2002
 - Optimize Composition
 - Stability
 - Action Time
 - Optimize Bridgewire
 - Down Select Conductive Mix Vs. Bridgewire