

Dispersion Simulation & The Case Against Smooth-Bore Tubes

Jeff Siewert
Arrow Tech Associates
1233 Shelburne Rd., Suite D-8
S. Burlington, Vt. 05403
802-865-3460
jsiewert@prodas.com

PRODAS 2000

If you can't get a bigger target...

Goal: Model the Complete Projectile Environment

- Propellant Ignition to Muzzle Exit
 - In-Bore Balloting Analysis
- Muzzle Exit to Sabot Discard
 - Transition to Free Flight
- Sabot Discard to Target Impact
 - Free Flight Trajectory Analysis

Balloting

- **Balloting:** any transverse motion of a projectile in the gun tube.
- Causes of Balloting:
 - Non-concentric Projectiles (e.g. center of gravity (CG) and principal axis offset from the bore centerline)
 - Insufficient stiffness of the projectile / gun tube interface
 - Gun tube curvature (including bore irregularities) exists in all gun tubes.
 - Gas dynamics produce asymmetric pressures at the projectile base.
 - Projectile spin interaction w/ projectile/gun tube structure

BALANS: History

If you can't get a bigger target...

Bent Penetrator Exposed in a Flash X-Ray Taken at Muzzle Exit in 1973

This event prompted Dr. B.K. Stearns (Co-founder of Arrow Tech) to develop a balloting code to assist in the re-design of the 30mm GAU8 API projectile.

BALANS 2000: New Features

- Use of PRODAS editor to model gun tubes
- Improved lumped parameter modeling
 - Takes advantage of PRODAS model structure
- Input measured interior ballistics data
- Ability to estimate sabot discard effects
- Automatically performs BF 6DoF trajectory sensitivity analyses

RROW TECH > Measured vs. Simulated **P-T History**

- Simulation Matches P_{max} , V_{muz} , 5%-95% Rise Time
- Still Misses Start-up Dynamic, 6% higher impulse @ peak

BALANS: Applications (1979-2002)

Large Caliber Long Rods (1979-1999)

	Projectile	Year
105 m m	M735	1979
	M774/M833	1980
	M 9 x x	1982-84
	M900	1988-89
1 2 0 m m	M 8 2 9 A 1	1986
	M 8 6 5	1987
	M865SS	1987
	FMS-KET	1987-88
	M829A1	1987-89
	M 8 2 9	1988-89
	M829E2	1989-91
	M865SS/M831	1990
	M 8 3 1 A 1	1994
	M865SS	1994
	M865SS	1998
	M829E3	1995-02

BALANS: Applications (1979-2002)

- Assess influence of bourrelet diameter, sabot stiffness and exit spin on dispersion
- Investigation of structural integrity.
- Perform sabot design study.
- Used in rapid design/build cycle; achieve first design success.
- Used SPC data to assess production tolerance effects.
- Predict in-bore performance and aerodynamic resonance.
- Assess influence of peak pressure, muzzle velocity, and in bore clearances on peak and time-integrated bourrelet loads.

BALANS 2000: Integrated with PRODAS

If you can't get a bigger target...

Analysis module in PRODAS 2000

- Consistent user interface
- All data in a single file/database
- Material, gun tube, propellant reference books
- Cut, copy, paste of tables and graphs

• Integration with other PRODAS modules and Reference Books

- Trajectory modules
- Interior Ballistics modules
- Gun Tube Reference: Twist vs. Travel

BALANS 2000: User Interface

Dispersion Simulation

If you can't get a bigger target...

Inputs:

- Dimensions/Tolerances for Orienting the Projectile
- Gun Tube Definition: Geometry, Material, Supports, etc.
- Interior Ballistics Forcing Function, sigma
- Projectile Aerodynamic Characteristics & Sensitivity Factors
- Misc. Error Estimates: Bore Site, Discard, Winds

Output: Muzzle Exit Conditions:

- Mean & Sigma Yaw Angle, Dispersion Contribution
- Mean & Sigma Angular Yaw Rate, Dispersion Contribution
- Mean & Sigma Barrel Transverse Velocity at Exit, Dispersion Contribution

Projectile In Bore Motion

PRODAS Cross Plot

• Differences in Projectile In Bore Motion Caused by Alternate In-Bore Projectile Support

The Case Against Smooth Bore Tubes

"Typical" Error Budget

Si	Smooth Bore Gun		"Slow Tw	vist" Gun
	Horiz.	Vert.	Horiz.	Vert.
Dispersion Source	mils	mils	mils	mils
Balloting	0.097	0.097	0.097	0.097
Velocity Sigma	0.000	0.052	0.000	0.052
Wind Error	0.125	0.000	0.125	0.000
Bore Site (est.)	0.050	0.050	0.050	0.050
Sabot Discard (est.)	0.050	0.050	0.050	0.050
Aero/Mass Asym.	0.092	0.092	0.000	0.000
a _{oun} x spin	0.000	0.000	0.012	0.012

Composite Totals
Smooth Bore Gun
"Slow Twist" Gun

~0.178

~0.153 (~ <u>16% less!</u>)

Aerodynamic Trim

- ~ 0.1-0.3 Deg. for Large Caliber Finners

Trim Sources:

- Component Curvature
- Component Mfg. Run-out
- Assembly Clearances

Causes:

- Small Initial Angle of Attack
- Swerve (Dispersion) until small roll rate is achieved

Tube Twist Considerations

Initial Twist:

Start at 0 Deg. (avoid torque spike due to FC wear)

Exit Twist:

- Above Aero Resonance (Long Rod or HEAT Designs)
- Below Structural Resonance (Long Rod)

"Rifling" Profile:

- "Rounded" to reduce localized melting & cracking
- # drive features based on torque & allowable stress

Summary

- Projectile & Gun Tube dynamic motion can be quickly and accurately simulated
- SPC data can be incorporated for most accurate balloting simulations (exit state)
- Slow Twist Rifling can reduce ballistic projectile dispersion by approx. 20%
- Exit Twist Angle must be assessed for each unique application