GENERAL DYNAMICS Armament Systems

Material Movement and Management (M³)
Technologies

High Volume Automated Naval Magazines

Objective

To introduce the burdens, compromises and performance interrelationships that govern the design of high volume automated naval magazines

Agenda

- Naval Trends
- Technical Solutions
- Technical Interactions and Relationships
- Conclusions

Emerging Requirements

Requirement Compromises

- Large systems have unique issues
 - ➤ Multiple round types
 - Typically between 2 to 20 different ammunition / propellant variants
 - Common interface is rare
 - ➤ Installation complexity
 - Complexity increases proportional to magazine size
 - Munitions hand-offs increase in number

Requirements are also not complementary

Developed Systems

GENERAL DYNAMICS
Armament Systems

Indicates System Capacity (tons log scale)

Magazine Solutions – Passive Systems

Definition:

One munitions set (projectile and propellant) is moved at a time

Advantages

- Low power
- Reliable storage
- Low cost
- Easily repairable
- Manually operational
- Accessible

Disadvantages

- Low feed rates
- Storage density versus selectability
- Packaging efficiency
- Mechanism Coordination

Magazine Solutions - Active

<u>Definition:</u>
All munitions move simultaneously

- Advantages
 - Reliable Storage
 - Yet less redundant
 - High feed rates
 - Simple orchestration
 - Flexible configuration
 - Selectability
- Disadvantages
 - Packaging Density
 - High Power Demand
 - Difficult to maintain
 - Cost efficiency

Magazine Solutions - Hybrids

Solutions

Passive Systems

Hybrids

Active Systems

A Single Munitions set Moves

A few Munitions sets Move

~half of Munitions sets Move

More than half Munitions sets Move

All Munitions sets Moves

Selectability

Reliability

Power / Rate of Fire

Storage Density

GENERAL DYNAMICS Armament Systems

Selectability: Size and Packaging

The greater the capacity: The slower a possible round selection

The greater the number of independent storage cells: The faster the round selection

Analysis - Cost vs. Capacity

- Cost efficiency is dependent on magazine technology
 - ➤ Passive systems:
 - Small change in cost vs capacity
 - Base price is large
 - ➤ Active Systems:
 - Moderate change in cost vs capacity
 - Base price is low
 - Hybrid Systems are a compromise between these two

The cost efficiency of a technology will depend on the capacity required

Analysis - Reliability at capacity

Storage Efficiency and Magazine Volume

- A linear relationship exists between magazine weight and volume
- Active magazine technologies possess the highest storage efficiency

Conclusion

Magazine designs need to fit the requirements of a system

Appropriate Technology
Optimum Packaging
Acceptable Reliability
Desired Selectability
The Right Cost

The Best Solution for the Job