Adaptive Spectrum Utilization with Software Defined Radios

Dr. Daniel Schaefer 703-883-3664 • dschaefe@mitre.org Mr. Steve Cox 703-883-6269 • scox@mitre.org The MITRE Corporation October 2, 2002

Agenda

- Project Overview
 - What is it?
 - Key components and technology used
- •What Capabilities and Resources were developed
 - Spectrum and Research community
- Technology Transfer to Real World Applications
- Ongoing Research & Development Opportunities

Approach: Adaptive System Operation

Not all spectrum used 100% of time

Waveform compatible with existing spectrum channelization plans and scalable to support wide range of user data rates using non-contiguous spectrum

Implementation Considerations

What's Different

- Many sharing applications use compatible waveforms to simultaneously share spectrum
 - Overlays such as spread spectrum
 - Avoidance by proper frequency selection
 - simultaneous operation limits performance of all systems
- Adaptive Spectrum concept shares spectrum in both time and frequency
 - minimize interference to primary users
 - allow higher transmit energy using transmit burst operation avoiding other primary users.

5

Potential Advantages

- Technology provides opportunity for secondary sharing of frequency channels with both cooperative and uncooperative users
- Use of smart protocols internal to radio minimizes the need for spectrum assignment pre-planning
 - Reduced spectrum related mission preplanning
 - Increased abilities to rapidly adapt to changing missions
- Technology and protocol implementations are hierarchical in structure
 - Totally automatic with no dedicated control channels
 - Dedicated control channel infrastructures for more positive regulation
 - for range use can employ additional scheduling
 - Distributed control architectures to accommodate unique mission needs

Adaptive Spectrum Communication System RF Processing

7

Adaptive Spectrum MOIE Development Environment

Adaptive Spectrum Use Measurements

•Need high time resolution, long term data to determine adaptive system performance potentials ~ 1 sec with spectrum analyzer

•Must develop occupancy statistics to optimally design adaptive system performance requirements

Adaptive Waveform Generation

- Variation on Orthogonal Frequency Division Multiplex
 - Note: Standard OFDM gives gives contiguous set of subcarriers
 - MOIE NEEDS ARBITRARY SETS OF NON_CONTIGOUS Transmit Carriers
- NEW Signal Processing Implementation Approaches
 - Extensive wave shaping for out-of-band rejection and non-contiguous carrier implementation

Adaptive Waveform Demonstration

----- Rx Subsystem in final implementation

Test Signal Source

- Test Source represents assigned user's signal activity within a frequency band
- Signal bandwidths are multiples of the spectrum channel band plan
- Duration and specific channel combinations are selected on a pseudo random basis

Click to run movie

Note: incremental changes are in kHz increments corresponding to individual channel assignments

Adaptive Waveform with Test Signal

- Adaptive waveform and test signal superimposed
- Lower power signal is test signal
- Higher power signal is adaptive waveform transmission
- Adaptation rate is reduced for viewing on spectrum analyzer

Frequency (MHz) *Note: incremental changes are in kHz increments corresponding to individual channel assignments*

System Demonstration Goal

Complete End-to-End System Demonstration

- Two independent radio sets
- Channel and traffic simulator

M ITRE

Generic Application Scenario Example

BACKUPS

Link Negotiation & Establishment (Point-to-Point Case Illustrated Here)

- Since each node makes an independent, <u>local</u> measurement of the radio spectrum some coordination is required before communication can occur:
 - spectrum pictures shared between users
 - optimum picture sharing dependent on environment

Summary of Link Negotiation via an Extended RTS/CTS Process

18

Adaptive Spectrum Communication System Baseband Processing

OFDM Transmitter

19

Pentek Quad Processor Board

- Four TMS320C6701 floatingpoint DSP's
 - operating at 167 MHz
 - 4 GFLOPS performance
 - SDRAM
 - serial full-duplex ports
 - zero-wait sync burst & dual port SRAM
 - flash memory
 - Data transfer rates up to 400 MB/sec

Pentek Upconverter Board

Block Diagram, Model 6229

Û

Pentek Downconverter Board

Block Diagram, Model 6231

MITRE

Additional Enhancements

M TRE

