

Economics, Logistics and Environmental Impacts of Hybrid Electric Veh

Dr. Michael E. Canes

Logistics Management Institute

April 9, 2003

Hybrids are in Widespread Use

- Honda
 - Insight
 - Civic
- Toyota
 - Prius

Picture Source: Honda Motor Co.

New Models Are Coming

- Ford
 - Escape
- Dodge
 - Ram Truck
- GMC
 - Sierra SUV
 - Saturn VUE
- Lexus
 - RX330

Military Interest

- Army
 - Humvee
 - COMBATT
 - FCS
- Marines
 - RSTV
- Air Force

Picture source: National Automotive Center

Livil Topics To Be Covered Today

- Technology of hybrids
- Economics in military use
- Logistics
- Environmental impacts

Hybrid Electric Veh Tech

Features of HEVs

- Combine 2 sources of power; electric motor and internal combustion engine
- Regenerative braking

Series Hybrid

Properties of Series Hybrids

- 10-15% gain in fuel efficiency
- Flexibility with regard to engine location
- Can be configured for onboard power generation
- Proven technology used in train engines, diesel submarines
- Most hybrid trucks use series design

Parallel Hybrid

Properties of Parallel Hybrids

- Motor, engine work together
- Significant gains in fuel efficiency
- Used in Toyota Prius, Honda Civic
- Being tried in trucks
- Can be configured for onboard power generation

Economics of Hybrids in Military Use

Potential Savings

- Reduced fuel consumption
- Reduced brake maintenance
- Reduced need for standalone generators

Incremental Costs

- Higher initial cost (addition of electric motor, batteries)
- Periodic battery replacement

Economics of th Humvee: Meth

- Comparison to Conventionally Powered Humvee
- Net present value analysis (20 year life)

Picture Source: IDT PEI

Economics of the Hybrid Humvee: Key Assumptions

- Value of onboard power generation = incremental cost of vehicle
- Cost of fuel reflects underlying logistics network (estimated at \$10/gal.)
- Conventional Humvee gets 9 mpg, driven 3500 miles per year
- Hybrid provides 30% efficiency gain
- 3 year battery life; \$3000 replacement cost

NPV of Hybrid Humvee Relative to Conventionally Powered

Base Case	\$15/gal	4-year battery repl.	\$2000/ battery repl.	50% mpg gain	5,000 miles/ year	7% v. 6% ROI
\$90	\$5,237	\$2,312	\$3,491	\$4665	\$4502	\$121

Humvee Breakeven Battery Cost vs. Life at Different Fuel Costs

HEV Logistics Gains

Logistics Footprint: What Does Onboard Power Generation Imply for Fuel and Weight Savings?

- Assume onboard generating capability
 = 30KW of power
- Assume otherwise need two 15KW portable generators and vehicles to pull each
- Assume hybrid Humvee in power generation mode uses same fuel as two 15KW generators

Assumed Equivalency of Hybrid Onboard Power Generation With Standalone Generators

Best Case Results

- 1 fewer conventional Humvee tow vehicle
- 2 fewer standalone generators
- Weight savings:
 - 1 Humvee (11,500 lbs)
 - 2 15KW generators (3324 lbs each)
 - + 1 hybrid weight increment (600 lbs)
 - = Net reduction of 17,548 lbs
- Fuel savings of 1 less vehicle plus 30% fuel efficiency gain for the other

Alternative Case Result

(Assume 15KW Onboard Generator)

- -1 fewer standalone generator (-3324 lbs)
- +1 hybrid weight increment (+600 lbs)
- = Net reduction of 2724 lbs

30% gain in fuel efficiency

Potential Logistics Savings for Weapons Systems

- THAAD
- SHORAD

THAAD –30 KW Hybrid Humvee Could Provide Power to Two Shelters

 Eliminate 2 15 KW towed generators + towing vehicle

25-30% reduction in fuel use

Plus Fewer Required Airlift Sorties

Picture source: National Automotive Center

Potential Logistics Savings for SHORAD System

Source: Army Program Office, Light Tactical Vehicles

Current System

Stowed Sentinel Radar

C2 Vehicle

Crew / Maintenance Vehicle

Hybrid System

Stowed Sentinel Radar
On Hybrid Humvee

Combined C2/Crew Vehicle
Powered by Hybrid Humvee

Net SHORAD Savings

- 2 trailers
- 1 Humvee
- Up to 50% of fuel consumption
- Volume, mass reduction of 40-45%
- 1-2 men

Environmental Impacts

Potential Environmental Advantages

- Reduced fuel use
- Reduced air emissions
- Reduced equipment mass
- Reduced air sorties to deliver equipment

Reduced Air Emissions

(Tons/15 Year Service Life)

	Auto	LD Truck	HD Truck
	(gasoline)	(diesel)	(diesel)
HC	.091	.042	.129
NOx	.015	.073	.399
СО	.246	.095	.619
CO ₂	19.818	26.160	78.000
РМ	.003	.003	.046
SOx	.003	.004	.014

Potential Environmental Challenges

- Battery disposal
- Increased mass of hybrid vehicle
- Parallel maintenance operations

Conclusions

- Economics of hybrids look favorable for military
- Potentially important logistics savings
- Net environmental impacts probably positive:
 - Reductions in air emissions
 - Net reduction in material mass
- But operational, economic, environmental challenges exist:
 - Performance under operating conditions
 - Incremental cost
 - Battery disposal