# CASE STUDY: ENVIRONMENTAL MONITORING USING REMOTE OPTICAL SENSING [OP-FTIR] TECHNOLOGY AT THE OKLAHOMA CITY AIR LOGISTICS CENTER INDUSTRIAL WASTEWATER TREATMENT FACILITY

Tinker Air Force Base, Oklahoma

Freddie E. Hall, Jr., PhD
Chemical Engineer
ENVIRONMENTAL MANAGEMENT DIRECTORATE
POLLUTION PREVENTION BRANCH



### INVESTIGATION OVERVIEW Outline



- Introduction
- Project Overview
- Distinctive Elements of Effort
- Air Emission Model
- Air Dispersion Model
- Coupled Model Validation / Calibration Process
- Coupled Model Results
- Comparison to Remote Optical Monitoring System
- Application to Risk Assessment
- Summary and Conclusions







### TINKER AFB, OKLAHOMA Introduction



- Tinker AFB covers 5,031 acres
  - Only 200 acres are undeveloped
- 765 Facilities
  - 15.3M feet<sup>2</sup> of industrial operations
- Three Creek Systems
- 700-plus Air Emission Sources
- 200 Underground Storage Tanks
- 11-Miles Industrial Wastewater Lines
- Three Wastewater Treatment Plants
- 36 Restoration Sites
- Provides Logistics Support to USAF Weapon Systems
  - B-1, B-52, E-3 Sentry, C/KC-135 aircraft







### TINKER AFB, OKLAHOMA Introduction [CONTD]



- Tinker AFB performs Depot Level Maintenance
- Process Assessment identified four Primary Processes
  - Depainting, Painting, Electroplating & Cleaning
  - Majority of processes discharge to an on-base treatment facility
- Regulatory Requirement to quantify Air Emissions from Industrial Wastewater Treatment Facility [IWTF]
  - Toxic Release Inventory and Air Emission Inventory
  - Clean Air Act Title V permit requires source & emission information
  - POTW NESHAP requirement
- Efforts focus on Methylene Chloride and Phenol
  - Both are CAA Title III Listed Hazardous Air Pollutants [HAPs]
  - VOC and semi-VOC examples
  - These chemicals account for majority of purchases / releases



### **ENVIRONMENTAL MONITORING**



**Project Overview** 

- Investigation will be presented in four Major Tasks
- Coupling of Emission and Dispersion Models represents a Cost-Effective and Environmentally-Responsible Approach
  - Coupling refers to sequential use of models [output is input]
  - Meet impact predictions, regulatory reporting requirements, and pollution prevention needs
  - Estimate emissions from IWTP process units
    - ➤ WATER8 air emission model developed by EPA
  - Estimate atmospheric dispersion concentrations
    - ► ISC-ST3 air dispersion model designed by EPA
  - Validate predictive accuracy of the coupled model
    - Comparison of coupled model predictions to field data
    - Comparison of coupled model predictions to OP-FTIR data
  - Demonstrate potential applications to include Risk Assessment

Coupled Model



### **ENVIRONMENTAL MONITORING**



Uniqueness of Investigation

### Distinctive Elements of Investigation

- Combined use of WATER8 and ISC-ST3
- Literature directed to specific applications
- Coupled model compared to MAAC
- Literature limited to single emission sources
- Literature focused at municipal wastewater treatment
- Detail and size of periodic canister data
- Investigation of three remote optical paths
- Multiple retroreflectors that bend optical path
- Evaluation of chemical depainting agents
- Coupled model used in risk assessment
- Completeness and comparative analysis







### **IWTP PROCESS FLOW DIAGRAM**



Primary, Secondary, & Tertiary Treatment





## **COUPLED MODEL OUTPUT** *Maximum Methylene Chloride Concentrations, PPB*







### **ENVIRONMENTAL MONITORING**Location of Periodic Canister Data







- Open-Path Monitoring System measures Atmospheric Emissions
  - Directing infrared optical energy along physical path that crosses downwind of emission source plume
  - OP-FTIR system used for environmental monitoring
- Pollutants modify Spectral Signal
  - Allows for determination of identity and quantity of pollutants
- OC-ALC Application consist of OP-FTIR Spectrometer
  - Operated in monostatic configuration
  - Designed to measure atmospheric dispersion concentrations along five distinct optical paths
  - Primarily concerned with fenceline concentrations [P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>]
  - System installed in 1995 and operational roughly three months
     36 percent of collected FTIR data considered unusable



## OPEN PATH MONITORING SYSTEM Remote OP-FTIR Optical Monitoring Pathways







## **COUPLED MODEL OUTPUT** *Maximum Methylene Chloride Concentrations, PPB*







### OPM SYSTEM COMPARISON Methylene Chloride--Optical Path P1







### OPM SYSTEM COMPARISON Methylene Chloride--Optical Path P2







## OPM SYSTEM COMPARISON Methylene Chloride--Optical Path P3







## COUPLED MODEL OUTPUT Maximum Phenol Concentrations, PPB







## OPM SYSTEM COMPARISON Phenol--Optical Path P1







## OPM SYSTEM COMPARISON Phenol--Optical Path P2







## OPM SYSTEM COMPARISON Phenol--Optical Path P3







### **ENVIRONMENTAL MONITORING**



**Summary & Conclusions** 

### OP-FTIR Ineffective Method of Predicting Field Data

- FTIR over-predicts field data along all three optical paths
- FTIR data gathered over 12 months
- FTIR over-predicts by orders of magnitude
- No visual trends for both components
- Clustering of data along optical path

### Reliability of Technology

- Three months worth of data over five years
- 36% of data considered unusable

### Potential Weaknesses

- Poor maintenance and oversight
- Weather data equipment and software
- No daily background spectra
- Significant water vapor impacts





# CASE STUDY: ENVIRONMENTAL MONITORING USING REMOTE OPTICAL SENSING [OP-FTIR] TECHNOLOGY AT THE OKLAHOMA CITY AIR LOGISTICS CENTER INDUSTRIAL WASTEWATER TREATMENT FACILITY

Tinker Air Force Base, Oklahoma

Freddie E. Hall, Jr. OC-ALC/EMPD

7701 Arnold Street, Suite 204

Tinker AFB OK 73145-9100

COM: 405-734-3114

**DSN: 884-3114** 

EMAIL: freddie.hall@tinker.af.mil