

IN SITU PERCHLORATE BIOREMEDIATION AT IHDIV NSWC

Paul B. Hatzinger, Ph.D.

Problem Statement

<u>Perchlorate</u> (ClO_4^-)

Use: Perchlorate salts have been used extensively by DoD, NASA,

Aerospace Contractors during last 6 decades as fuel oxidants in

rockets and missiles.

Contamination: Groundwater contamination in at least 14 states, including CA,

NV, UT, TX, MD, MA. Greater than 15 million impacted.

Toxicology: Perchlorate inhibits thyroid function and influences

metamorphosis. Effects of low level exposure are

uncertain. California action level is now 4 ppb.

Characteristics: Anion, low volatility, high water solubility, chemically

stable, persistent in environment for years.

Remediation: Traditional ex situ technologies (e.g., air stripping, carbon

adsorption, filtration) are ineffective. Biological

remediation is considered the most promising approach.

Perchlorate Biodegradation

^{*} Highly Favorable Reaction (-801 kJ/mol acetate)

* Several Different Genera Isolated (Wolinella, Ideonella, Dechlorospirillum, Dechlorisoma, Dechlorimonas)

Fluidized Bed Reactors > 7 BILLION GALLONS TREATED

Key Questions for In Situ Treatment

- * What is the Natural Occurrence of Perchlorate Reducers?
- * Can They be Stimulated to Degrade Perchlorate In Situ Using Electron Donor Addition? Which Donors?
- * What are Potential Inhibitory Factors?

Potential for *In Situ* Remediation

MICROCOSM AND COLUMN STUDIES:

Occurrence of Perchlorate Reducers Electron Donors Alternate Electron Acceptors Environmental Variables Developed Biodegradation Model

SITES EVALUATED:

- (1) JET PROPULSION LABS (CA)
- (2) INDIAN HEAD NSWC (MD) (2 Sites)
- (3) THIOKOL PROPULSION (UT)
- (4) **SOUTH OYSTER** (VA) (Pristine Site).
- (5) LONGHORN AAP (TX) (3 Sites)
- (6) **BOEING CORP** (CA) (2 Sites)

SERDP Laboratory Studies

CONCLUSIONS

- Perchlorate-reducing bacteria are widely distributed: soils, groundwater, sewage, etc.
- Biostimulation is a promising *in situ* approach, but most effective electron donor is site specific.
- Oxygen and nitrate must be biodegraded before perchlorate reduction will occur.
- •Low pH (< 5.5) inhibits perchlorate reduction.
- Other common electron acceptors such as sulfate and ferric iron do not influence perchlorate reduction.

INDIAN HEAD DIVISION, NAVAL SURFACE WARFARE CENTER FIELD DEMONSTRATION

January 2002 - January 2003

Demonstration Site

Site Characteristics

6'

Groundwater Characteristics

1. Depth 6 - 16 ft (BLS)

2. Perchlorate 50-400 mg/L

< 5.0 3. pH

4. Alkalinity ~20 mg/L

5. Sulfate 50-200 mg/L

2-12 mg/L(as N) 6. Nitrate

7. Nitrite < 0.4 mg/L

8. Oxygen ~ 1 mg/L

Soil and Backfill **Sand Stringers** Sandy Silt/ **10**⁴ Clayey Silt Sand/Gravel **Gray Clay**

Laboratory Results

- 1. Perchlorate-Reducers Present.
- 2. No degradation at Site pH.
- 3. Degradation after Buffering.
- 4. Acetate, Lactate effective in Buffered Sediments.

Approach ()

- Amend Aquifer with Sodium Lactate as Electron Donor (~ 350 mg/L) and a Bicarbonate/Carbonate Mixture as Buffer (~ 2500 mg/L).
- Design a Recirculation System to Ensure Thorough
 Mixing of Amendments with Perchlorate-Contaminated
 Groundwater.
- Install Two Plots: A Test Plot that Receives Amendments and a Control Plot (No Amendments) to Monitor any Abiotic Decline in Perchlorate Concentrations.

Recirculation System

Field Pilot Design

Control Plot

Injection Skid

Test Plot

O Extrac

Extraction Well

HDIV Field Pilot

PROJECT SCHEDULE

- Begin Adding Buffer/Electron Donor 7/25/02.
- Performed 2 Baseline Sampling Events (5 wks, 1 wk before)
- Groundwater Sampling (2, 4, 7, 10, 15, 20 wks)
- Completed Sampling 12/12/2002

• DATA

Water Recirculated During the Field Demonstration

Influence of Buffer Addition on pH in Deep Test Plot Wells

pH Values in Shallow Test Plot Wells During Buffer Addition

IHDIV Field Pilot - Lactate

Lactate Levels in Representative TPMWs

IHDIV Field Pilot - Perchlorate Cost Effective Leadership for a Cleaner Environment

Perchlorate Levels in Shallow Test Plot Wells

Perchlorate Levels in DeepTest Plot Wells

IHDIV Field Pilot - Lactate

Lactate Levels in Deep TPMWs

IHDIV Field Pilot Perchlorate Perchlorate

CONCLUSIONS:

- 1. The Recirculation System Effectively Delivered Buffer and Electron Donor Throughout the Test Plot.
- 2. Perchlorate and Nitrate Biodegradation Occurred Rapidly After the Amendments were Applied to the Aquifer.
- 3. In Situ Treatment Using Electron Donor and Buffer Addition is a Viable Bioremediation Option for Perchlorate Treatment in Source Areas.

OUESTIONS?

Paul B. Hatzinger (609) 936-9300 hatzinger@envirogen.com

Jay Diebold (242) 549-6898 jdiebold@envirogen.com

2003 Symposium May 15-17