

47th Annual Fuze Conference

Shock Testing of Surface Micromachined MEMS Devices

Michelle A. Duesterhaus*

Vesta I. Bateman**

Darren A. Hoke *

*Electro-Mechanical Engineering (2614)

** Solid Mechanics Engineering, Mechanical Shock Lab (9126) Sandia National Laboratories

Albuquerque, NM 87185-0329

maduest@sandia.gov

(505) 845-0978 Office (505) 844-9554 Fax

Sandia National Laboratories

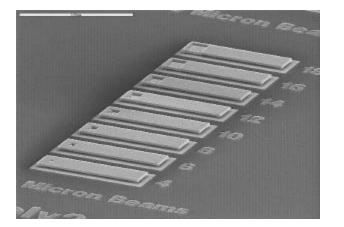
Project Background

47th Annual Fuze Conference

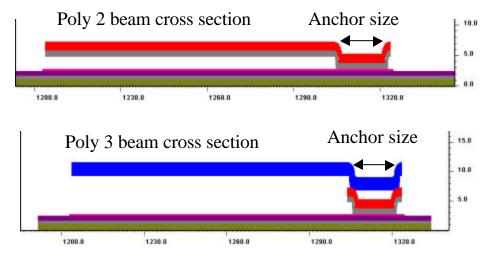
April 8-10 New Orleans, LA

• Goals:

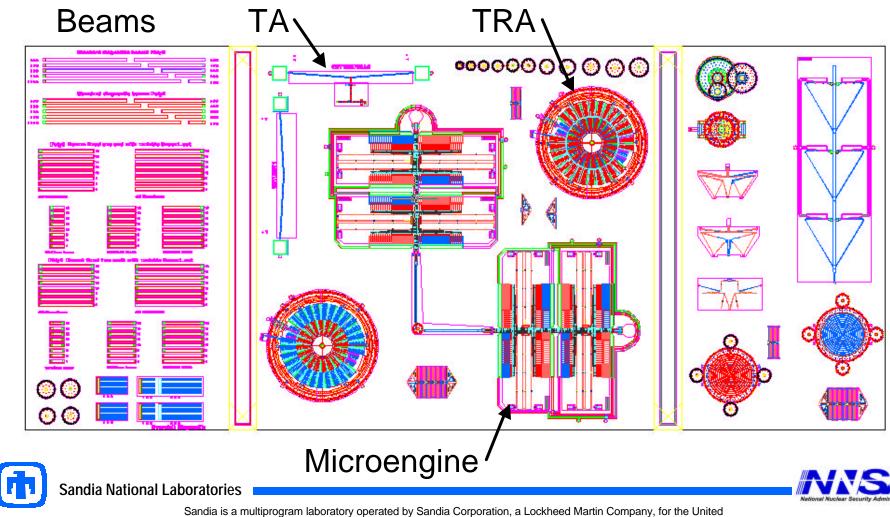
- What level and direction of shock causes a Surface Micro Machined MEMS device to fail?
- Are actuators operational after shock tests?
- What are the failure mechanisms due to shock?
- Is survivability process dependent, SUMMiT[™] vs. Cronos MUMPs®?
- What is the effect of a combined temperature and shock environment?
- Are modeling tools available to predict failure?
- Plan:
 - Shock test MEMs die containing actuators and simple structures, with inspections before and after shock tests
 - Simple structures used to correlate modeling results
 - Actuators from 'Standard Component Library'
 - Microengines, Torsional Ratcheting Actuator (TRA), Thermal Actuator (TA)



Test structures – Test setup


47th Annual Fuze Conference

- Beams designed with differing layers, lengths and anchor sizes
- Die bonded to Al fixture and shocked using Hopkinson bar


Sandia National Laboratories

SUMMiT[™] Die Layout

47th Annual Fuze Conference

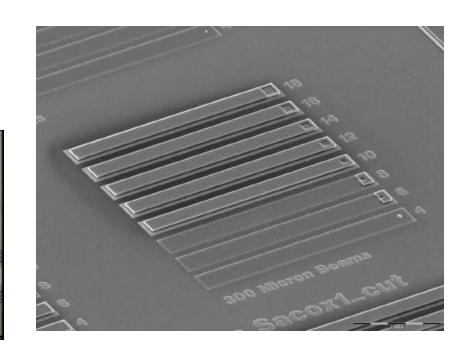
April 8-10 New Orleans, LA

Post-shock Inspection Results - SUMMiT[™]

47th Annual Fuze Conference

April 8-10 New Orleans, LA

- SUMMiT[™] fabricated die
 - Compression part I: (21 die, 5K to 200K g's)
 - No beams failures
 - No pre-shock operation of actuators for comparison
 - Compression part II: (4 die, 100K to 200K g's)
 - No beams failures
 - All actuators intact, but few function properly
 - Tension: (5 die, 50K to 200K g's)
 - Long beams (> 400 microns) broken between 50K and 150K g's
 - Microengines broken at all levels tested
 - Most TA's and TRA's intact, but none function properly
 - Shear: (3 die, 60K g's)
 - No beam failures
 - Microengines' gear fails, 50% of TRA's function, all TA's function



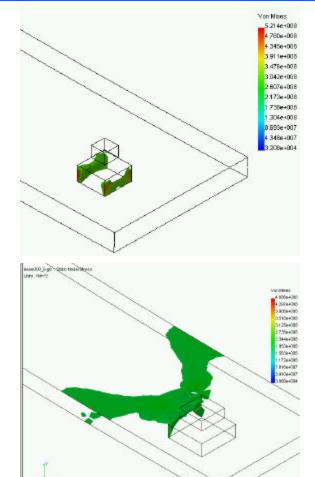
Post-shock Images - SUMMiT™

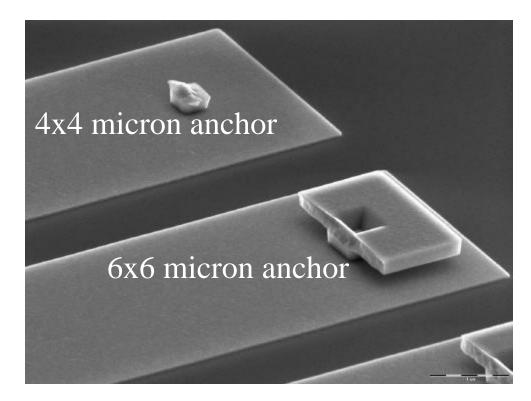
13

47th Annual Fuze Conference

• Typical failure of a microengine after shock in tension

•After 210K g shock in tension, 300 micron beams with small anchors and all longer beams are broken


Sandia National Laboratories

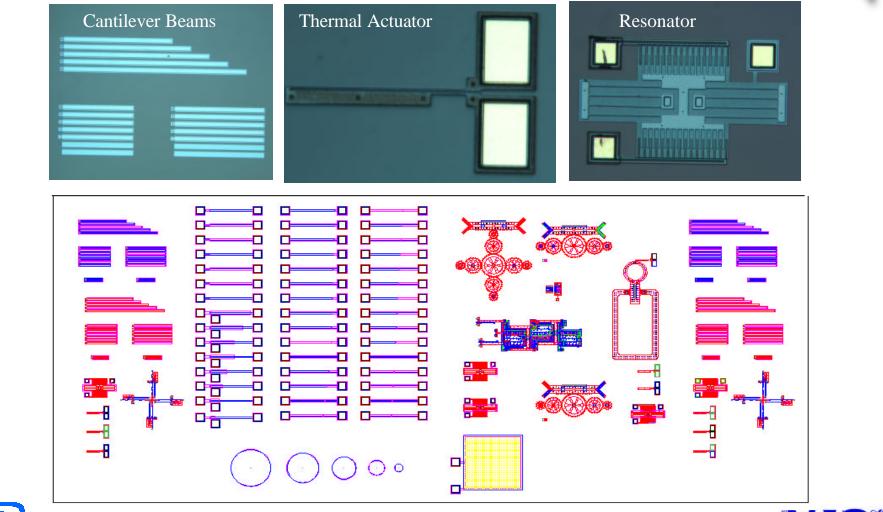

Post-shock Images - SUMMiT™

47th Annual Fuze Conference

April 8-10 New Orleans, LA

• Failure due to fracture of polysilicon material, not de-lamination of layers

S.E.M. image by M.B. Ritchey


Sandia National Laboratories

Cronos Die Layout

47th Annual Fuze Conference

April 8-10 New Orleans, LA

Sandia National Laboratories

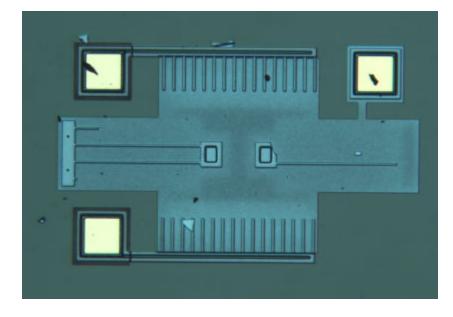
Netional Nuclear Security Administration

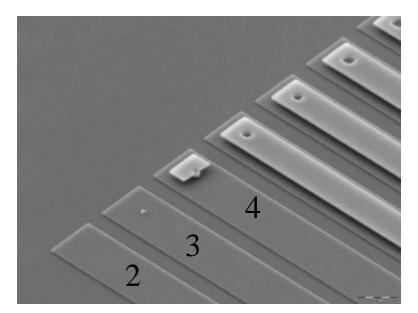
Cronos April 8-10 New Orleans, LA

Post-shock Inspection Results - Cronos

47th Annual Fuze Conference

- Cronos MUMPs® fabricated die
 - Compression: (6 die, 100K to 200K g's)
 - Very few beam failures
 - Only beams with 2 micron anchor size failed
 - All actuators were intact, and most function properly
 - Exception: Thermal actuators do not function after 106 K and 215 K g's
 - Tension: (9 die, 50K to 200K g's)
 - 3 die detached from fixture
 - Increasing beam failures with increasing shock levels
 - Some damage at low shock levels may be due to larger parts coming loose and sliding across die
 - Most actuators intact and function properly
 - Exception: Resonators missing after 153K g's
 - **Shear:** (2 die, 60K g's)
 - Very few beam failures
 - Only beams with 2 or 3 micron anchor size failed
 - All actuators were intact, and all function properly

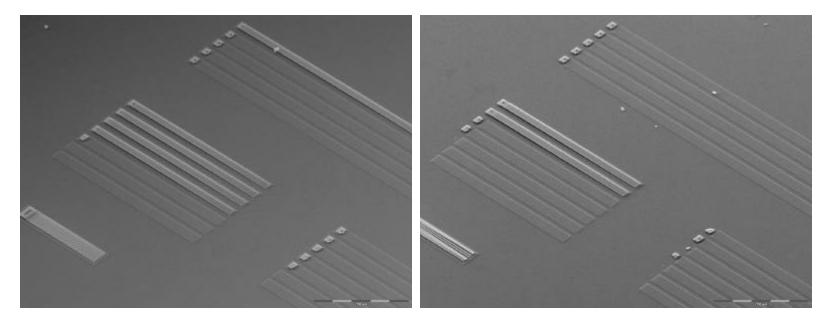

Post-shock Images - Cronos


47th Annual Fuze Conference

• Typical failure of resonator

- Typical Poly 2 beam failures
 - Function of anchor size

Sandia National Laboratories


Post-shock Images - Cronos

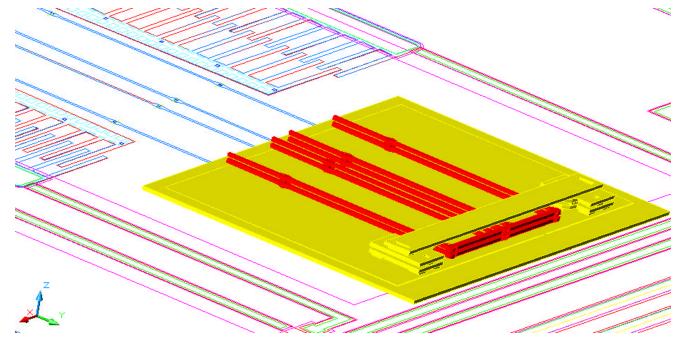
47th Annual Fuze Conference

- Poly 2 beams after 124K g's tension shock
- De-lamination of anchors smaller than 3 microns

April 8-10 New Orleans, LA

- Poly 1 beams after 124K g's tension shock
- De-lamination of anchors smaller than 4 microns

Sandia National Laboratories



Design for High-g Shock Survivability

47th Annual Fuze Conference

April 8-10 New Orleans, LA

- How to apply what we learn to future designs?
 - Mechanical stops
 - Minimize stress concentrations, develop MEMS Design Guide
 - Orient MEMs device in application to minimize shock effect

Conclusions

47th Annual Fuze Conference

- Surface Micromachined (SMM) MEMS devices are very sensitive to the direction of shock inputs
- Failures of SMM MEMS actuators seen at levels as low as 50K g's
- Most common failure mechanism is fracture of polysilicon material
- Current work in progress
 - Run shock tests at temperatures ranging from -65°F to 165°F
 - Test g-hardened designs: mechanical stops, etc
 - Run shock tests of MEMS in vacuum
- Extensions to this work
 - Study survivability of wire bonds
 - Expand testing to include DRIE and LIGA parts

Acknowledgements

47th Annual Fuze Conference

- Ed Vernon
- Fred Brown
- Rosemarie Renn
- Joyce Zamora
- Paul Lemke
- M. Barry Ritchey
- Questions?

