

KDI Precision Products, Inc. 3975 McMann Road Cincinnati, Ohio 45245-2395

Development of Battery Automation Equipment Lithium Reserve Battery for the M234/235 Self-Destruct Fuze

Alex Hughes

Director of Manufacturing Services

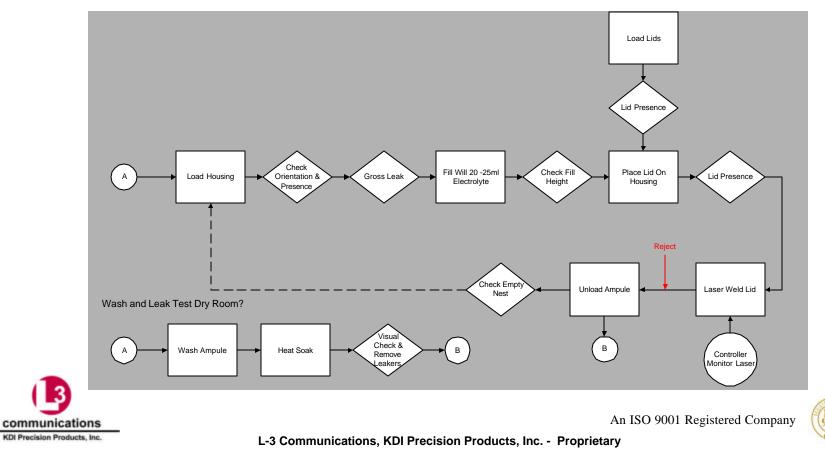
An ISO 9001 Registered Company

Program History

- Phase I
 - Initial Concept of the Process
 - Selection of Qualified Vendors
- Phase II
 - Conducted Risk Review of the Piece Parts and the Equipment
 - Conducted Preliminary Design Review of the Equipment
 - Conducted Critical Design Review of the Equipment
- Phase III
 - Final Proveout of the Machines
- Current Status

An ISO 9001 Registered Company

Program History


- The Automated Battery Line is part of a complete fuze assembly line contracted under the High Rate Equipment (HRE) contract, capable of delivering 190,000 fuzes/month on 1-8-5 shift basis.
- In 2000 an IPT Team was formed between KDI, ARDEC, and ARL to review the process and design requirements for the Self-Destruct Lithium Reserve Battery.

Phase I

- Initial Concept of the Machines
 - Developed a Process Flow of the Assembly Equipment with Specific Quality Checks (SOW)

Phase I

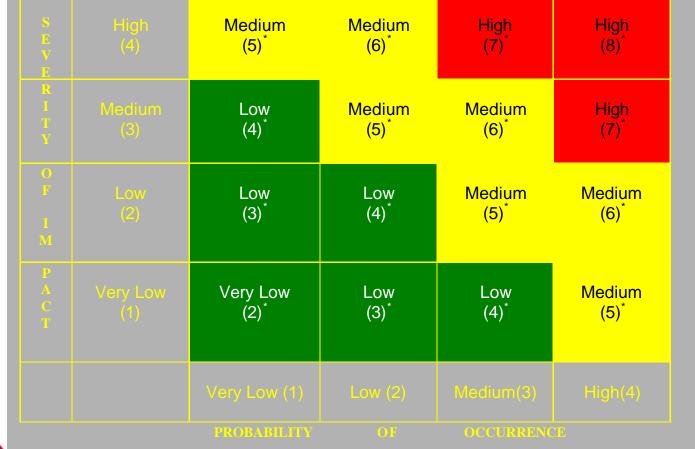
- Selection of Qualified Vendors
 - Vendor Selection Rating Matrix
 - · Technical
 - · Facilities/Personnel
 - · Schedule
 - · Financials
 - Intangibles
 - Four Companies were reviewed
- RD Systems was the IPT's Final Selection

Phase II

- Conduct Risk Review of Piece Parts and Equipment
 - Risk Assessment Metrics
 - Probability of Occurrence
 - · Severity of Impact
 - Risk Leveling of Scoring Matrix
 - Management Board Approval

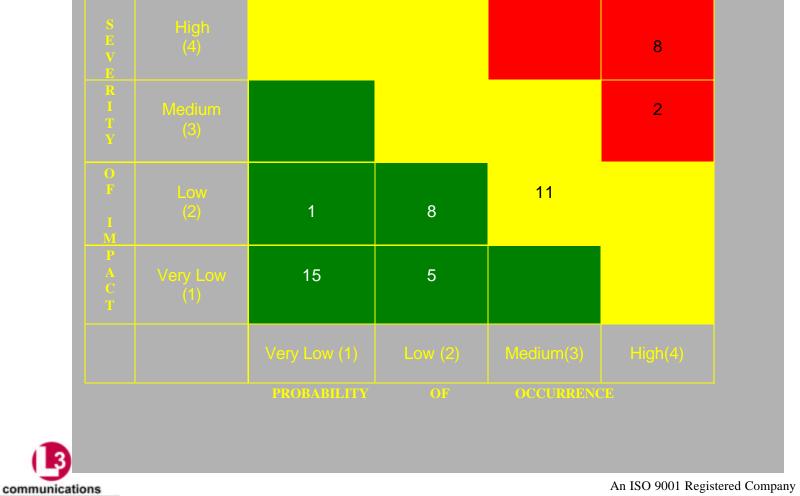
Probability of Occurrence

- ✓ **High** (a 70% or Greater Chance That This Risk Will Occur)
- ✓ Medium (a 30-69% Chance That This Risk Will Occur)
- ✓ Low (a 10-29% Chance That This Risk Will Occur)
- ✓ Very Low (a Less Than 10% Chance That This Risk Will Occur)


Severity of Impact

	RISK TYPES		SEVERITY OF IMPACT
COST	SCHEDULE	PERFORMANCE	
Increase of \$500K or greater	Increase of 6 Months or greater	Customer-critical requirement will not be achieved; all margin has been exceeded	High (Critical): Will likely cause program failure and/or would not be able to meet primary requirements
Increase of at least \$200K but less than \$500K	Increase of at least 3 Months but less than 6 Months	Decrease in customer- critical performance eliminates all margin	Medium (Serious): Will cause major deviation from program plan and harm credibility with customer
Increase of at least \$20K but less than \$200K	Increase of at least 1 Months but less than 3	Customer-critical requirement will be achieved but all margin has been eliminated	Low: Will cause moderate deviation from program plan, but all key program requirements will be met
Increase of less than \$20K	Increase of less than 1 Months	Customer requirements will be met with adequate margins	Very Low: Will cause only a small deviation from plan and all requirements will be met.

Risk Level of Scoring Matrix



An ISO 9001 Registered Company

Risk Level of Scoring Matrix

KDI Precision Products, Inc.

- Manufacturing Risk: (H8)
 - Wicking of Electrolyte/Salt Build Up on Needle
 - Low / Over Fill of Ampule
 - Tight Tolerance (Needle to Hole)
 - Meeting rate / cycle time of Fill and Seal
 - Corrosion of Fill and Seal Equipment
 - Proper placement of Ball onto the Cover
 - Breaking of Ampule glass during the Ball press Operation
 - Obtain proper seal after the Ball is pressed into Cover
- Manufacturing Risk: (H7)
 - Cleaning and Etching of Terminal Pin
 - Lithium Punch Tool Build Up

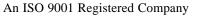
• Manufacturing Risk: (M5)

- Perpendicularity of Terminal Pin
- Terminal Pin Tinning coverage (RD Prototyped a Process Developed by Ardec)
- Solderability of Terminal Pins
- Time between cleaning & tinning
- Maintain Case flatness
- Control the Welding Burrs on Case
- Proper seating of Terminal Plate
- Improper Terminal Plate Weld
- Electrical Failure not detected
- Gross Battery Leak not detected
- Fine Battery Leak not detected

- Manufacturing Risk: Wicking of Electrolyte/Salt Build Up
- Manufacturing Operation: Electrolyte Fill
- Probability of Occurrence: High (Inherent properties of electrolyte to wick)
- Severity of Impact:
 - ✓ Cost: High (may have to go to hand line \$20-\$60/battery)
 - Schedule: High (2 years to get new battery line)
 - Performance: Medium (heat soak/inspection will pick up low/over fills but chance of latent defect getting through)
- Risk Level: High (8)
- Risk Manager: Alex Hughes / Ben Lagasca
- SAVIT Producibility Study (parts completed testing in progress)
 - ✓ No hole cover & projection weld
 - ✓ No hole slip fit cover & laser weld

- KDI Fill & Seal Investigation (Data Gathering)
 - ✓ Use of Inert Atmosphere
 - ✓ Pull vacuum then fill
 - ✓ Effects on electrolyte temperature
 - ✓ Needle size/material effects
 - ✓ Pump size/stroke/speed/suck back features
 - ✓ Fill with cover and no cover
 - ✓ Pelletize salt then fill
- RD Systems Fill & Seal Prototype (Chill electrolyte/parts, Fill open reservoir then laser weld cover)
- HIBAR Fill & Seal Prototype (Pull vacuum, Fill through hole, Inert gas purge, press ball)
- MANTECH Fill & Seal prototype (process yet to be defined)

- Utilize phased approach to build/design equipment
 - Build prototype and down select prior to final design of battery equipment
- Utilize Thales expertise/support
 - ✓ Hand build batteries data gathering
 - ✓ Support production facility setup
 - ✓ Provide technical expertise
- Revised Probability of Occurrence: Low (several approaches but nothing proven yet)
- Revised Severity of Impact:
 - ✓ Cost: Medium
 - ✓ Schedule: Medium
 - ✓ Performance: Low


• Fill and Seal Results

- Reduced Salting to a Manageable Level
- Fill Volume (20-28 micro liters)*

✓ Stdev	0.70
✓ Average	23.33
✓ Max	25.73
✓ Min	21.36
✓ + 3 Sig	25.45
✓ -3 Sig	21.21

* Samples taken over a 4 hour run

Phase II

- Lithium Laminate Assembly
 - Cutting the Lithium and Adhering the Lithium to the Nickel to Form the Anode

An ISO 9001 Registered Company

- Phase II
 - Conducted Preliminary Design Review (PDR)
 - Reviewed the Initial Concept of the Machines at RD Systems
 - Conducted Critical Design Review (CDR)
 - Reviewed the Detailed Drawings of the Assembly Equipment
 - Reviewed Exit Criteria for IPT's Technical Approval
 - All the Manufacturing Risk Points were resolved

- Phase III
 - Final Proveout of the Machines
 - Preliminary Production Review of Individual Machines
 - IPT Concurrence of Acceptance Test Plan (ATP)
 - Verify all Inspection Stations
 - Capability Studies of Each machine
 - Verify Throughput, First Pass Yield, and Uptime
 - Proveout of Assembly Line
 - Initial Proveout will be conducted at RD Systems
 - Final Proveout will be conducted at KDI

- Current Status
- KDI's SD Fuze High Rate Equipment Complete
- Battery Automation Equipment
 - Phase I & II Complete
 - Phase III
 - PDR's & CDR's Complete
 - Began Proveout of individual work cells 2/1
 - Proveout RD Systems
 - Proveout KDI July
 - First Article Battery Testing
 - First Article Fuze Testing

2/18/03 June 03 July 03 September 03 November 03

