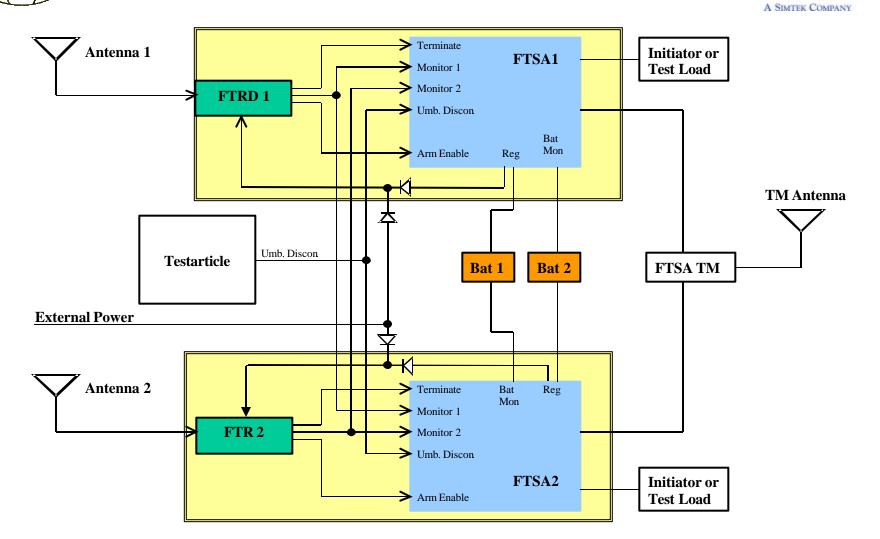


An Integrated Flight Termination Receiver Decoder and Flight Termination Safe and Arm **Presented by: Dale Spencer – KAMAN Co-Authors:** Mike Harrell - Q-DOT Thomas E. Linnenbrink - Q-DOT Christopher E. Hay - Q-DOT to: **NDIA** 47th Annual Fuze Conference New Orleans, La April 9, 2003


Background KAMAN Aerospace

Joint Advanced Missile Instrumentation (JAMI) Flight Termination Safe and Arm (FTSA)

- Cooperative Research and Development Agreement
 - Raymond Engineering Operations (REO)
 - Signed 12 April 1999
- Division of Responsibilities
 - China Lake
 - Electrical/Explosive Design and Development
 - Environmental Testing
 - REO
 - Packaging
 - Hardware Manufacturing
- Under Development, Proof-of-Design Phase

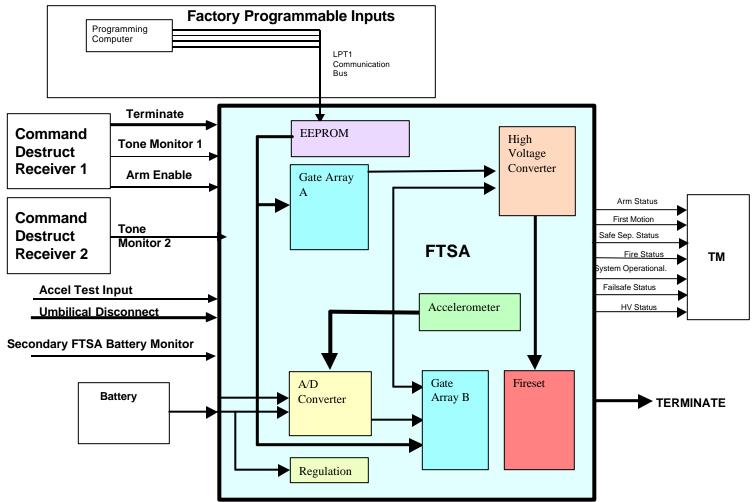
Integrated FTRD FTSA FTS Concept

DOT

Integrated FTRD / FTS Benefits

- Standardization
- Off-the-Shelf Availability
- Low Unit Cost
- Small Size & Weight
- Low Power Consumption

JAMI FTSA Background


JAMI FTSA Proof of Design Unit

- Compliant With RCC 319-99 (Tailored)
- Factory Programmable For Multiple Applications
- Small Size (~10in³/unit)
- Low Cost DTUPC
- Qualified To "Worst Case" Environmental Levels
 - Based on Environments of Potential Users
- Removable Explosives (EFI, Etc.)
- Fully Testable (Including HV Output)

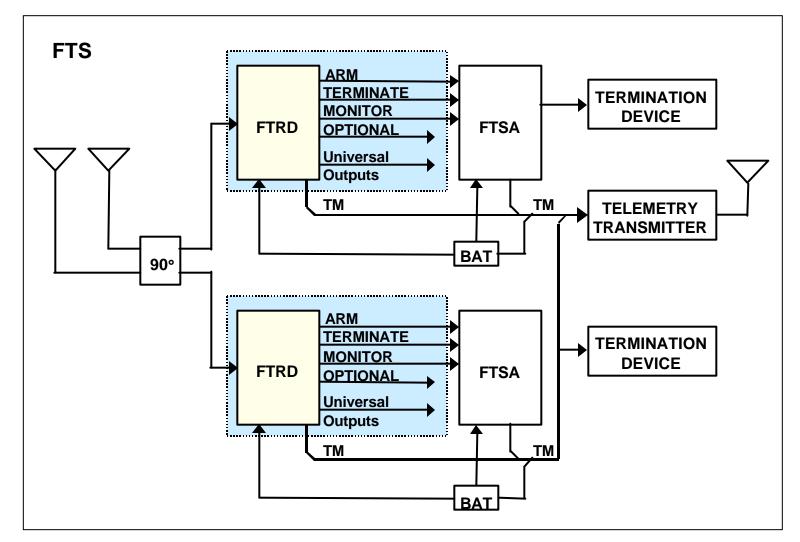
Block Diagram of JAMI FTSA

AFRL:	Lt. Christopher Badgett, AFRL				
	850/852-8876, x3461				
	christopher.badgett@eglin.af.mil				
	Ronald R. Cofer				
	850/882-7347				
	ronald.cofer@eglin.af.mil				
Q-DOT:	Michael E. Harrell, Principal Investigator				
	719/590-1112, x124				
	harrell@qdot.com				
	Diane Williams, Program Manager				
	719/590-1112, x121				
	williams@qdot.com				
KAMAN:	Dale L. Spencer, Consultant				
	860/632-4477				
	dspencer-ray1@kaman.com				

SBIR Contract No. DAAB07-02-C-L602

- Assess feasibility of developing, and performance of a standardized universal FTRD within the constraints of RCC 319-99
- Detail an optimum architecture for the FTRD
- Determine the feasibility of an Integrated FTRD/ FTSA
- Phase I Completed
- Phase II proposal submitted, November 05, 2002

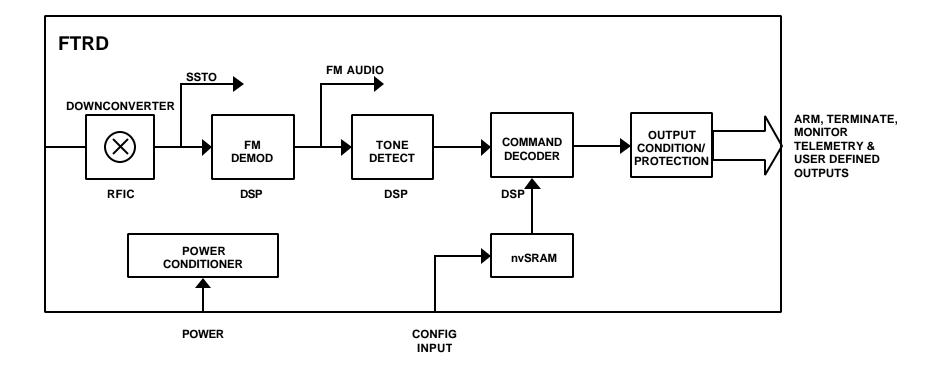
Phase II and III Plan


Task Name	2003				2004				
Task Name	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
FTRD Phase II Development									
MILESTONES	⇔ KO				♦ CDR	♦ 1	< st Silicon	> F. Report	
Phase III: FTRD Demo									
MILESTONES	¢ ĸ	o			≎ CDR		♦ Der	no Board	

- Proposed Phase II (submitted 11/05/02)
 - 19-month plan to design and build first-pass RFIC
 - CDR of circuit design/layout at 10 months
 - First silicon at 16 months
 - Final report at 19 months, after Phase III evaluation
- Concurrent Phase III (Kaman REO funding)
 - 18-month plan with most activity in last seven months
 - Incorporate Kaman FTRD requirements and designfor-manufacturability at the outset

Universal Flight Termination System

Universal FTRD Requirements



- Compliant With RCC 319-99 Tailored and 313-01
- Factory Programmable for Multiple Applications
- Small Size Compatible with JAMI FTSA Area
- Low Cost DTUPC
- Designed to "Worst Case" Environmental Levels
 - Based on Environments of Potential Users
- Fully Testable

Standard Flight Termination and Receiver Decoder (FTRD)

FTRD Functions

- Detect and lock to command signal
- Detect RCC signals
- Decode tones and sequences (including ARM, TERMINATE, MONITOR, OPTIONAL, CHECK CHANNEL)
- Output commands (ARM, TERMINATE, etc.)
- Output telemetry signals
- Provide programmable interface
- Support installation and checkout testing
- Support sensitivity testing
- Support Day-of-Use check
- Commanded and power-up self-test

FTRD and FTSA Programmability

FTRD Programmability

- Command frequency (406-450 MHz),
 0.5 MHz resolution
- Fail-safe mode
 - Fail-safe enable / disable
 - Three-tone mode (FTSA) also provides this operating mode)
 - Loss of RF signal, threshold and delay timer
 - Loss of power, threshold, delay timer
 - Four-tone mode
 - Fail-safe enabled / disabled by preset RCC tones

FTSA Programmability

- Failsafe Enable
 - Loss of Monitor (tone drop out time)
 - Loss of Power (Minimum BAT Volt)
- First Motion Enable
 - First Motion Valid Time
- Acceleration Enable
 - Axis of Acceleration
 - Acceleration Level
- Umbilical Disconnect Enable
- Safe Separation Time
- Arm Enable
- Command Arm (TBD)

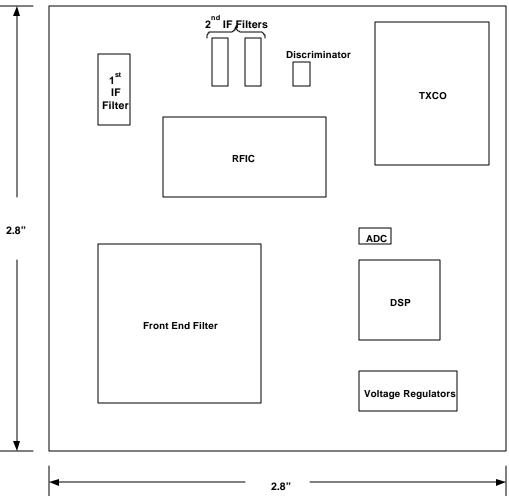
FTRD/ FTSA Programmability (Cont.)

- Programmable Outputs
 - RCC tone output mapping
 - Tone sequence output mapping
 - Response time, delay time
 - Secure mode ARM and TERMINATE sequence programming
- Self-test tailoring
- Telemetry signal command
 output mapping
- Enable valid tone frequencies

Programmable OUPUTS

- Flight Destruct (Explosive)
- Safe/Arm Status
- Fire Status
- Safe Separation Status
- First Motion Status
- System Operational
- Failsafe Status

FTRD Approach


- Single SiGe RFIC
 - Two stage down-converter to baseband I/Q outputs
 - Low-power and minimal external components
 - Low-cost
- Synthesized 1st LO for tuning over 406-450 MHz
- Low-power COTS DSP
 - Performs IF filtering, FM demodulation, and tone detection
 - Supports proposed EFTS waveform with minimal reprogramming

Preliminary FTRD Board Layout

IF Demod with DSP tone detect (most components)

Integrated FTRD/ FTSA Summary

<u>FTRD</u>

- Will meet Performance Requirements of JAMI and RCC 319-99 Tailored
- Designed to Fit within FTSA Module Width and Length
- Size: 2.8" x 2.8" x 0.375"
- Weight: < 5 ounces
- Based on Environments of Potential Users
- Power: 0.6 W
- <u>Can Support Proposed EFTS</u> <u>Waveform and High Alphabet</u>

FTSA

- Compliant With RCC 319-99
 (Tailored)
- Factory Programmable For Multiple Applications
- Small Size (~10in³/unit)
- Low Cost DTUPC
- Qualified To "Worst Case" Environmental Levels
 - Based on Environments of Potential Users
- Removable Explosives (EFI, Etc.)
- Fully Testable (Including HV Output)