

Adding an Electronic Self Destruct Mode to the M230 Fuze

47th Annual Fuze Conference April 8-10, 2003 Contributors: Olivier Nguyen – Electronic Design Jintae Kim – Mechanical Design

Briefing Outline

 Program Objective
 Background on existing M230 Ground Impact Fuze and M261 Hydra Rocket
 Design of M230 Fuze with electronic self-destruct
 Future plans

Project Objective

As part of the D862 Fuze Technology Integration program to upgrade existing fuze designs, the Fuze Division initiated an in-house design effort to incorporate an electronic self-destruct mode into the M230 rocket submunition fuze.

Program Goals

- Improved reliability of training ammo Reduced Duds
- Existing fuze reliability 95% (5% dud rate)
- Goal of SD fuze meet OSD policy of <1% unexploded ordinance on the battlefield</p>

M261 HE MPSM Warhead

- Part of the Hydra 2.75 rocket system
 Fired by Apache and Cobra Helicopters
- Effective against Light Armor, Materiel, and Personnel.
- Main Fuze M439 Remote Set Time Fuze
- Contains 9 M73 submunitions
- Each submunition fuzed by a M230 fuze

Basic M230 Fuze Operation

The M230 fuze combines a Ram Air Decelerator (RAD) and a bore rider/slider combination

Basic M230 fuze Sequence of Operation

- Upon expulsion from the warhead the bore rider safety is removed.
- The air stream forces deployment of the RAD, breaking the shear wire and retracting the arming pin. Retraction of the arming pin unlocks the slider.
- The arming spring pushes the slider to the armed position with the escapement providing safe separation.
- When the slider is in the fully armed position the trigger is unlocked.
- Upon impact the trigger releases the detent ball. The firing pin is now free to move.
- The spring force of the firing pin causes the firing pin to impinge upon the M55 detonator initiating the explosive train.

M230 fuze with self-destruct

Primary mode – Operates in the same manner as the existing M230 fuze - same safe and arm mechanism and impact mode switch. The fuze arms after expulsion and the M55 detonator initiates the explosive train & grenade at impact.

If the primary mode fails, then

Secondary SD mode - Operates independent from arming. The electronic circuit & power source fire an electric detonator at a fixed time after expulsion. The electric detonator output initiates the primary mode's M55 detonator. If the fuze is armed the warhead functions (self destruct) – if the fuze is not armed the sensitive detonators are eliminated (self neutralization).

M230 SD Sequence of Operation

IF SD and primary modes fail, timer turns off and bleed down circuit discharges electrical power

Concept for M230 Fuze with Electronic Self-Destruct Feature

Adds a totally independent self destruct mode

Modifications to the M230 Fuze to Incorporate the Self-Destruct Mode

- Modified the slider to add an M100 detonator for SD functioning and relocated the gear teeth
- No changes to the impact switch, RAD, firing pin, or the fuze booster plate
- Minor modifications to the bottom plate of the gear train assembly

Housing with slider and gear train

M230 Fuze w/ SD

M230 Fuze

Relocation of Gear Teeth

Location of SD electronics

Cavity for reserve battery and activation mechanism Impact switch parts not shown

Self-destruct circuitry

M230 Fuze w/ SD Circuitry

Electronic Design

Utilizes PIC micro-controller to perform timing functions, and operate 2x charge pump

- Low power consumption
- On board nonvolatile memory
- Small size 8 pin SOIC package
- On board flash memory can be used to "tag" ckt & prevent multiple power ups from operating the circuit in dud fuzes
- Battery bleed circuit in case M100 detonator fails to function

.524 in

Power Source Options

- Reserve battery to activate on expulsion
- Key Requirements:
 - Electrical: 3-5 volts @ 150 mA Typical
 - Active life Less than 2 minutes required
 - Storage life : 10 years min
- Candidates examined
 - Reserve battery in M234 fuze
 - Miniature size, performed well in lab tests with the circuit production line being setup
 - Prototype OICW battery supplied by ATK
 - Larger size may enhance producibility
 - Can fit into M230 design but smaller size desirable
 - Lab Tests planned

M100 Firing Voltage Test

Used the Langlie Method to test 35 M100 detonators to determine "All-fire" and "No-fire" Voltages

SD Circuit produces > 6 volts and exceeds detonator all-fire voltage by a large margin!

Lab Tests with M234 Battery

Charging Curve of SD circuit with M234 reserve battery

Future Plans

Complete design
 Fabricate prototypes
 Perform rocket tests with prototypes