

MK 66 ROCKET MOTOR/HELICOPTER COMPATIBILITY PROGRAM

27 MARCH 2003

ERIC HAWLEY

Contact Information Ph: (301) 744-1822 Fax: (301) 744-4410 hawleyej@ih.navy.mil

INDIAN HEAD DIVISION NAVAL SURFACE WARFARE CENTER INDIAN HEAD, MD

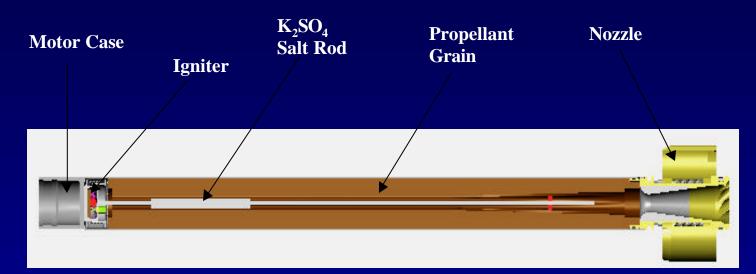
Helicopter Engine Compatibility Background

- Problem description:
 - AH-1F downed with fatalities in 1988 while firing MK 66 Rocket Motors
 - Army investigation concluded that the accident was caused by engine ingestion of high-temperature, oxygen-depleted rocket exhaust gasses
 - AH-1 physical mod implemented (air scoop)

Helicopter Engine Compatibility Background

- AH-64 testing identifies rocket exhaust ingestion into engines still a problem
 - Causes engine torque splits and torque fluctuations (surges)
 - Physical mod to aircraft considered not practical
 - Firing restrictions in effect

Helicopter Engine Compatibility Background


- High temperature oxygen depleted rocket exhaust caused by secondary combustion
- Secondary combustion (afterburning) occurs when CO and H₂ in the exhaust react with oxygen in atmosphere

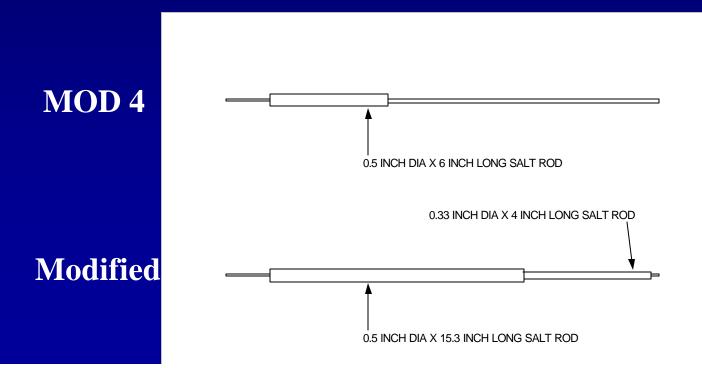
Combustion Component	Exit Composition (mole fraction)
CO_2	0.1898
CO	0.33007
H_2O	0.18146
H_2	0.17295
N_2	0.12218
Pb	0.00177
Cu	0.00177

Current MK 66 exhaust components

MK 66 Rocket Motor Background

MK 66 MOD 4 ROCKET MOTOR

Helicopter Engine Compatibility Approach


- Secondary combustion can be suppressed by introducing more potassium sulfate (K₂SO₄) into motor exhaust
 - Mod 0-4 Salt Rod addresses rocket exhaust ingestion issue in fixed wing aircraft
 - Helicopter ingestion situation is the same
 - Ingestion timeline is different
 - Existing salt rod consumed in 6 feet of motion
 - Helicopters need salt rod effect through rotor downwash
 - Army Aviation Engineering specifies 30 feet as necessary

Salt Rod Modification

- There is a linear relationship between salt volume and duration of afterburning suppression
- Amount and shape of salt rod modified to increase effectiveness for 30 feet
- Enlarged salt rod contains ~ 3x more K₂SO₄

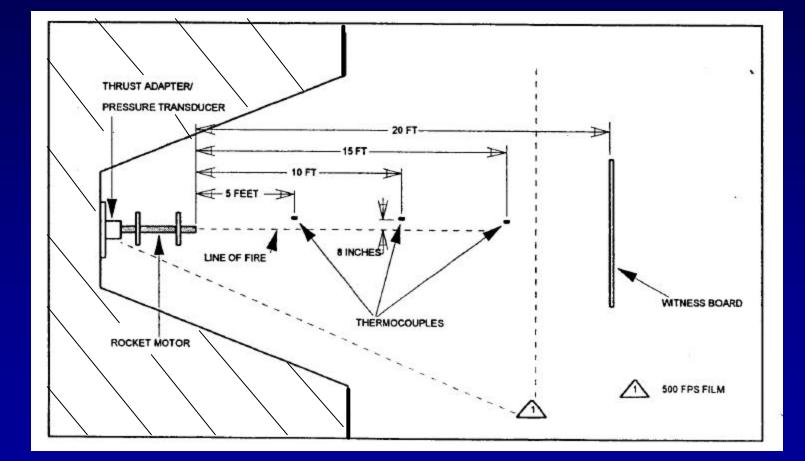
7

Exhaust Chemical Analysis

• K₂SO₄ reactions

- Afterburning reaction: $2CO + 3H_2 + 2OH + 2O_2 => 2CO_2 + 4H_2O$

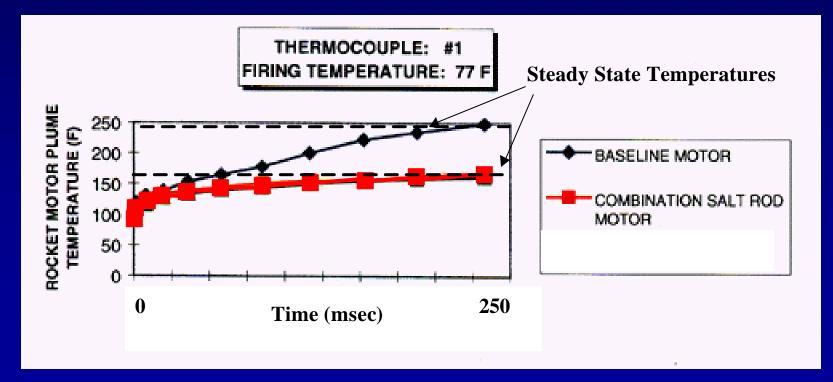
Atmospheric oxygen


– Reaction with K₂SO₄:

 $\overline{K_2SO_4 + 2CO + 3H_2 + 2OH + 2O_2} = 2CO_2 + 3H_2O + H_2S + KO + K + 2O_2$

- K₂SO₄ provides oxygen to the exhaust, which delays the overall reaction of the exhaust fuels (H₂ and CO) with the atmospheric oxygen (O₂)

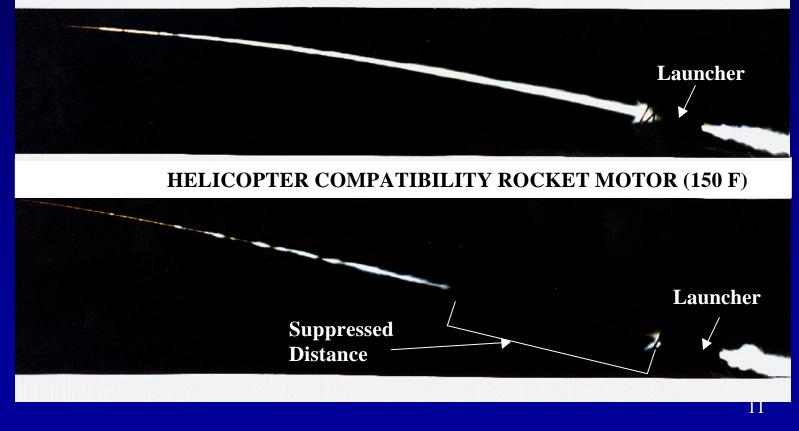
Static Fire Test



9

Static Fire Test Results

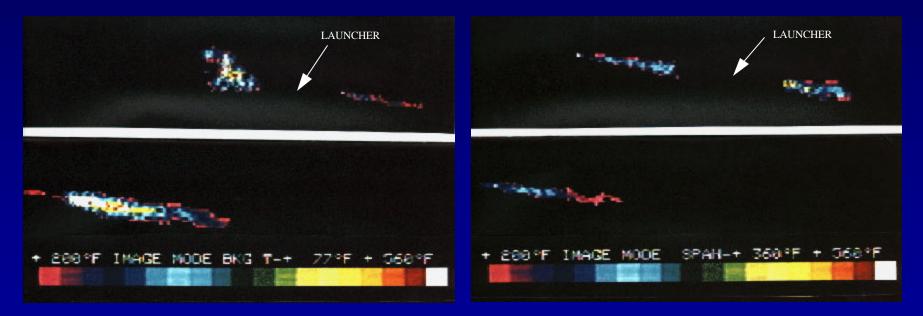
 Motor exhaust temperature found to be more than 20% lower than current MK 66 motors at 77 F and 150 F



Ground Launch Results

• Suppressed flight distance >30 ft average

MK 66 MOD 3 ROCKET MOTOR (150 F)



Ground Launch Results

• Ground launch thermal data

MK 66 MOD 3 ROCKET MOTOR (150 F)

HELICOPTER COMPATIBILITY ROCKET MOTOR (150 F)

Air Launch Verification

- Air launch test on an instrumented AH-64A with MK 66 motors w/ enlarged salt rod conducted in 1998
- Test conditions
 - 10 knot wind restrictions
 - Altitude was 150 ft
 - Air temperature was in upper 70s, 70-80% RH
 - Test pass/fail criteria:
 - Torque split exceeds 15%,
 - Main engine torque fluctuations of ±15%,
 - Tail rotor torque fluctuations of ±500 ft-lbs

Air Launch Results

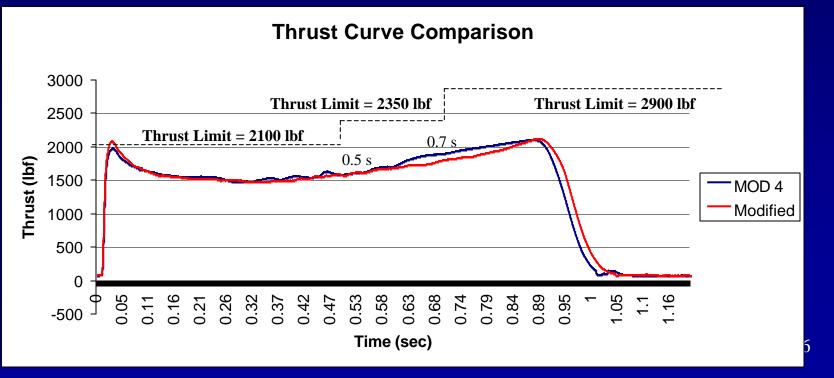
• All engine surge conditions eliminated except one

- Hover: All surge conditions eliminated

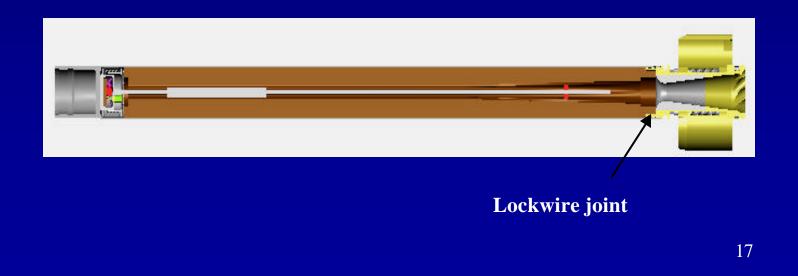
- 40 kts forward flight: All conditions but one eliminated

CONDITION	LEFT OU	TBOARD	LEFT IN	BOARD	RIGHT I	NBOARD	RIGHT O	UTBOARD	MK 66 MOD 3	HELICOPTER COMP
	ROCKET	ROCKETS	ROCKET	ROCKETS	ROCKET	ROCKETS	ROCKET	ROCKETS	ROCKET MOTOR	ROCKET MOTOR
	DENSITY	FIRED	DENSITY	FIRED	DENSITY	FIRED	DENSITY	FIRED		
HOVER	10	2								
	8	8								
	12	12								
	19	19								
	19	19					19	19		
			14	2					1	TESTED TWICE
			12	4					1	TESTED TWICE
			8	8						
					19	2				
					17	2				
					15	2				
	16	4								
	12	12								
	19	19								
			19	2/1					1	1, 1 (NOTE 1)
			17	2/1					1	1 (NOTE 2)
40 KTAS FORWARD			15	2						
			2	2						
					19	2			1	TESTED TWICE
					17	2			1	TESTED TWICE
					15	2			1	TESTED TWICE
	12	4					12	4	1	TESTED TWICE
	8	8					8	8	5	

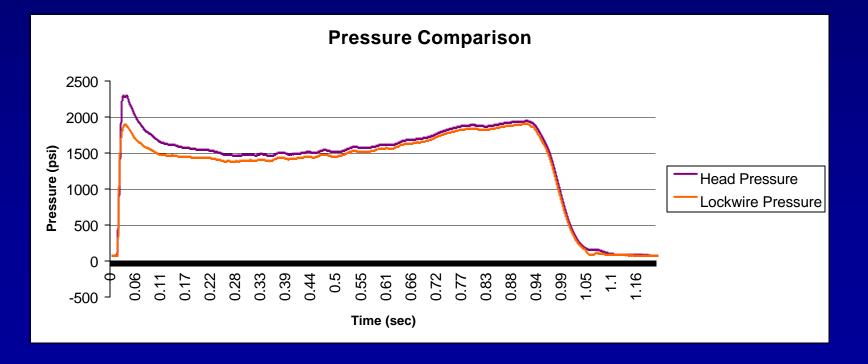
Air Launch Results (cont.)


• Worst condition: 40 kts forward flight, one or two rockets fired from left inboard launcher

Internal Pressure Concerns

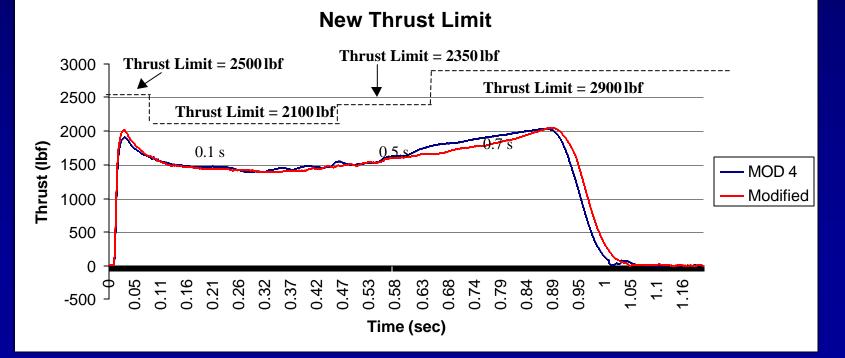

- Enlarged salt rod causes ignition pressure spikes
 - Enlarged salt rod known to increase pressure, and therefore thrust during ~ 0.10 second of burn
 - Measured thrust values near MK 66 specification limit of 2100 lbf

Pressure Differential Test


- Thrust requirement derived from internal forward end measured pressures
- Aft end known to be weakest point on motor (lockwire joint)
- Efforts made to measure pressure at aft end

Pressure Differential Test

- Pressure differential test performed at Indian Head in June 2002
 - Previous analysis predicted a 350 500 psi drop at 150°F
 - Aft pressures measured ~400 psi lower than forward end during first 0.10 seconds at 150°F



Pressure Differential Test Results

• Thrust limit redefined based on aft end pressures

- Recommended a new thrust limit of 2500 lbf for the first 0.10 seconds of burn
 - Maintains motor tube factor of safety of 1.5
 - Verified by analysis and historical data

Future Work

- Enlarged salt rod design will be incorporated into the MK 66 MOD 6
- Qualification of MOD 6 scheduled to begin in this spring
 - Qualification includes:
 - Environmental Tests
 - Ground Launch
 - Air Launch
- Due to enter production midway through FY04

Questions

Contact Information

ERIC HAWLEY

Ph: (301) 744-1822 Fax: (301) 744-4410 hawleyej@ih.navy.mil