

Advanced Propulsion Concepts for the HYDRA-70 Rocket System

27 MARCH 2003

ERIC HAWLEY

Contact Information Ph: (301) 744-1822 Fax: (301) 744-4410 hawleyej@ih.navy.mil

INDIAN HEAD DIVISION
NAVAL SURFACE
WARFARE CENTER
INDIAN HEAD, MD

Background

• The Hydra 70 is a tri-service area suppression weapon system.

- Uses multiple warheads
 - HE
 - Smoke
 - Flare
 - **Sub Munitions**
- Used on multiple platforms

elicopters	Fixed Wing
AH-1	A-7
AH-64	A-10
OH-58	F-4
UH-60	F-16
UH-1	F/A-18
MH-60	A-4
MH-6	A-6
	\sim 2

MK 66 Rocket Motor Description

HERO and **ESD** safe

BKNO₃ ignition system

End and outer diameter inhibited, double-base propellant

Wrap Around Fins

MK 66 MOD 4 ROCKET MOTOR

• Length: 41.7 in

Weight: 13.6 lbs

• **Diameter:** 2.75 in

• Avg. Thrust: 1413 lbs

• Total Impulse: 1515 lb-sec

• Burn Time: 1.07 sec

• Range: 6 km

• Temperature limits: -50°F - 150°F

MK 66 Rocket Motor Performance

MK 66 Thrust Curves

MK 66 Velocity Profile

MK 66 Spin Profile

Objectives

- The Army is seeking to incorporate guidance and control (G&C) technology into the Hydra 70 Rocket System, and would like a rocket motor optimized for such operation.
- In addition, there are opportunities to improve the unguided performance of the rocket motor.
- Objective: make a good rocket motor even better.

Requirements

- Unguided Requirement: Decreased dispersion
- Notional Guided Requirements (achieved through more motor control)
 - Increased range (12 km)
 - Lower peak acceleration
 - Consistent velocity

Design Constraints

- Physical Boundaries
 - Must support 2.75 inch infrastructure (launchers, containers)
 - No change in outer diameter or length
- Smoke Requirement
 - Minimum smoke propellants required
 - Smoke obscures targeting system lazing for guided rounds
 - Minimum smoke improves survivability of warfighter
 - Limits available propellants
- Dual Use Rocket Motor
 - One rocket motor used for guided and unguided applications
 - Two rocket motors add logistical complexity and cost

Unguided Dispersion

Current dispersion of unguided motor is 29 mils CEP

- 2 major factors contribute to rocket dispersion
 - Aircraft (pylon and launcher perturbations, pilot aiming)
 - Thrust misalignment

Unguided Dispersion (cont.)

- Thrust misalignment: Current rocket motor has a thrust angle misalignment tolerance of +/- 0.3 deg
 - Major contributors:
 - Nozzle to motor tube joint
 - Motor imbalance

Unguided Dispersion (cont.)

- Potential solutions for nozzle/motor tube joint
 - Threaded nozzle/motor tube joint
 - Drawbacks: Cost and complexity
 - Tighter interface tolerances
 - Drawbacks: Does not remove all misalignment; added cost
- Potential solution for motor imbalance
 - Most dispersions occur during first 0.10 seconds of flight
 - CEP can be reduced by increasing the rocket motor launcher exit spin rate

Unguided Dispersion (cont.)

- Increasing the torque provided by nozzle increases launcher exit spin rate (must shut off or motor will destroy itself in flight)
 - High torque nozzle concept can be used to generate high torque for ~.10 sec

Unguided Dispersion Conclusions

- Technologies exist that can significantly decrease unguided rocket motor dispersion
- Methods have been tested successfully

Increasing Range

- Current rocket has ~6 km max range
 - Preferred guided range: 10 12 km
 - Potential solution
 - Range can be increased by using a detachable, snap-on fairing to reduce $\mathbf{C}_{\mathbf{D}}$ of warhead
 - Meets 10 deg or Von Karman requirements for supersonic aerodynamic efficiency
 - Material must survive up to 300 lbf aerodynamic drag force and brief aerodynamic heating, while crushing undetectably under the thousands of pounds of fuze-target impact.

Increasing Range

Altering the Thrust Profile

- A boost sustain rocket motor can increase give a more constant velocity profile
 - Must maintain high initial thrust to maintain accuracy through down wash and to ensure safe separation from aircraft

Predicted Velocity

Current Velocity

Altering the Thrust Profile

- Boost sustain methods
 - Eroding nozzle throat
 - Method used in CKU-7/A ROCAT
 - May be able to use current propellant grain
 - Two-part propellant grain
 - Use propellants w/ different burn rates to produced desired thrust
 - Both methods have been applied to other rocket systems

Improved Rocket Control

- Current rocket motor is difficult to guide
 - Roll reversal
 - Fins not designed for guided flight
 - Potential Solution
 - Optimize fin number & size to guidance control surfaces
 - Fins too small, rocket skids
 - Fins too big, rocket difficult to turn
 - · Remove roll reversal

3-FIN, NEUTRAL-MOMENT, FIN ASSEMBLY

4-FIN, NEUTRAL-MOMENT,
FIN ASSEMBLY
(may provide more consistent
lift profile for guided round,
with comparable performance
on unguided round)

Conclusions

- There are many options using current technologies to improve Hydra rocket motor
- Technologies exist that can meet the requirements of both guided and unguided rocket motors.

Questions

Contact Information

ERIC HAWLEY

Ph: (301) 744-1822

Fax: (301) 744-4410

hawleyej@ih.navy.mil