Physics Based Modeling of Recoil Dynamics for Light Vehicle Mounted Cannons

Presented

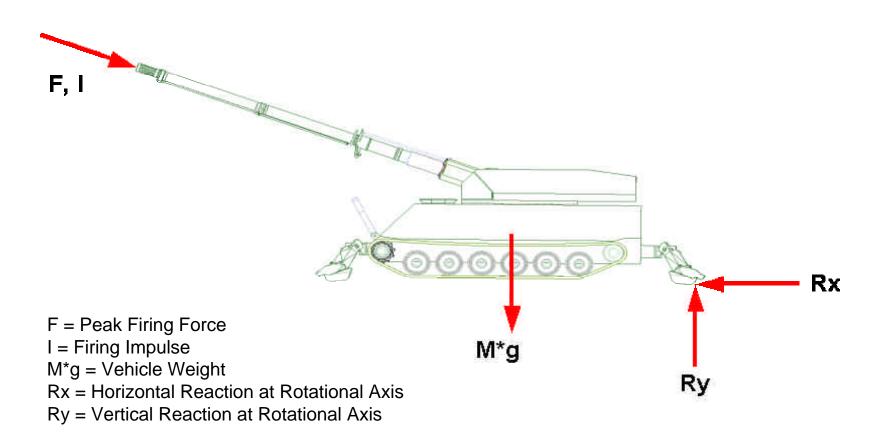
at the 38th Annual Gun and Ammunition Symposium & Exhibition

> 24-27 March 2003 Monterey, California

David C. Rutledge, Ph.D. United Defense LP

Motivation for Modeling Firing Dynamics

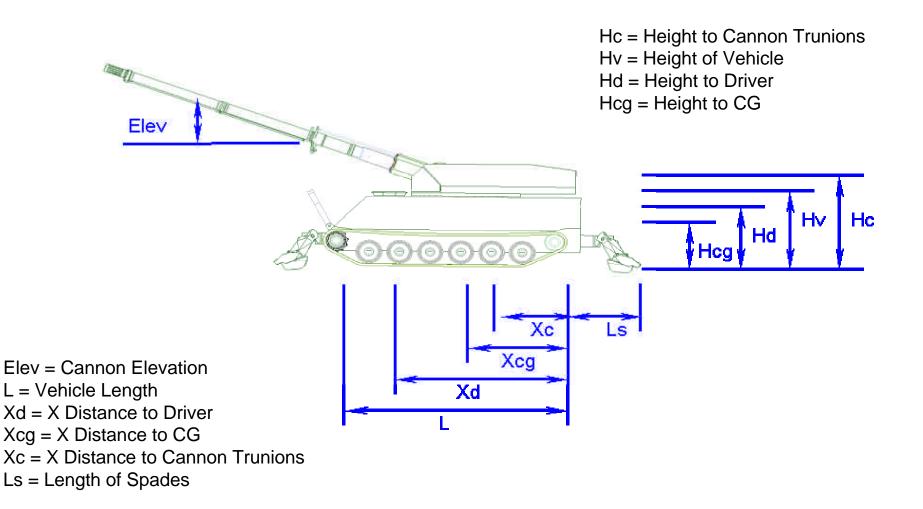
- Force Transformation will require powerful cannons mounted on light armored vehicles
- Firing the cannon causes a dynamic response by the vehicle
- The firing impulse causes a large angular reaction (pitch and roll) by the vehicle
- The firing peak force imparts a large acceleration on the vehicle crew
- These angular reactions and crew accelerations must be small enough for the vehicle and crew to fight effectively
- Modeling important tool in designing towards this goal


Types of Dynamic Models for Firing Dynamics

- 2 types of models used to predict vehicle stability: detailed DADS models and Physics Based models
- DADS (Dynamic Analysis and Design System) model includes higher geometric detail and component compliances, allowing detailed time based simulation
- Physics Based model includes lower geometric detail and no compliances, resulting in reduced modeling fidelity. These models allow much quicker analyses and trend studies
- Both types of models are physics based the difference is the level of detail modeled
- This presentation focuses on Physics Based models as employed at United Defense for rapid concept development

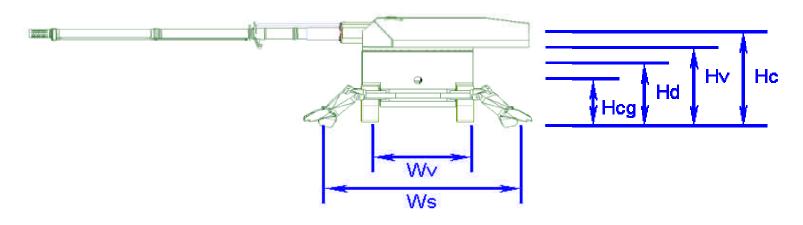
Description of Physics Based Model

- Model is Spreadsheet Based
- Model is designed to be as flexible as possible
- Calculation allows either indirect or direct fire cannons
- Limited or full traverse can be accommodated
- Vehicles with or without spades can be modeled
- Model can use wheeled or tracked suspensions
- Vehicle diagrams show a notional 18 ton tracked vehicle mounting a 155 mm howitzer with full traverse and four spades
- Vehicle analyzed in this briefing is more specific: an 18 ton vehicle mounting a 120 mm cannon with full traverse (no spades)


Notional Vehicle Free Body Diagram

Notional Vehicle Free Body Diagram

F, I F = Peak Firing Force I = Firing Impulse M*g = Vehicle Weight Rx = Horizontal Reaction at Rotational Axis Ry = Vertical Reaction at Rotational Axis


Notional Vehicle Geometric Variables

Notional Vehicle Geometric Variables

Hc = Height to Cannon Trunions Hv = Height of Vehicle Hd = Height to Driver Hcg = Height to CG

United Defense

Ws = Width of Spades Wv = Width of Vehicle

United Defense

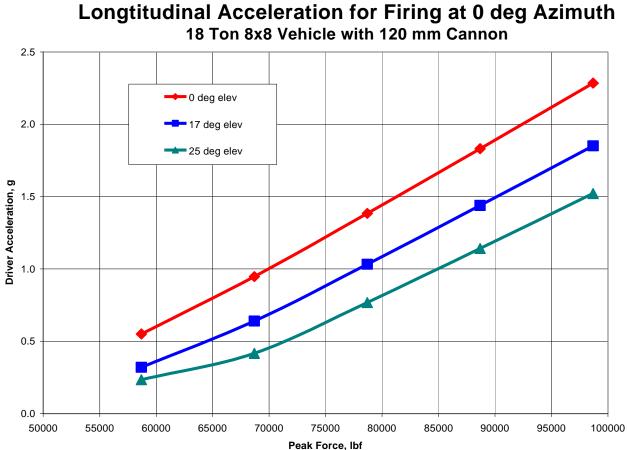
Physics Based Model Method of Calculation

- Cannon firing impulse and peak trunnion force are the primary inputs
- Cannon elevation, cannon traverse, and vehicle side slope are secondary inputs
- Basic vehicle mass properties, geometry, and spade position then determine vehicle response
- When vehicle does not use spades the ground reaction is where the wheels/tracks contact the ground
- Model assumes no elastic deformation occurs
- Model tuned to correlate with results from test firing data and DADS models

Calculation of Maximum Vehicle Reaction Angle

- Use cannon firing impulse to calculate the initial upward angular velocity of the vehicle
- Use conservation of energy to calculate the height that the vehicle CG rises
- Calculate reaction angle that would raise the CG that height

 this is the maximum reaction angle
- Plot maximum reaction angle vs. cannon firing impulse, a key design parameter


- Use cannon peak trunnion force to calculate the rolling moment and horizontal force on vehicle at instant vehicle starts rotation
- Calculate angular and linear acceleration at crew stations
- Calculate the resultant acceleration this is the maximum crew acceleration
- Plot maximum crew acceleration vs. peak firing force, a key design parameter
- Simulation uses 120 mm cannon fired at high zone: firing impulse of 5700 lbf-sec and recoil stroke of 20 in
- Vehicle is an 8x8 wheeled design with a weight of 18 tons

Reaction Angle vs. Firing Impulse

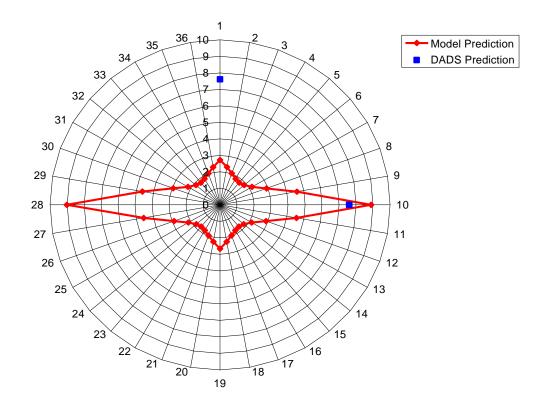
18 Ton 8x8 Vehicle with 120mm Cannon 3.0 0 deg elev 2.5 17 deg elev 25 deg elev 2.0 Pitch Angle, deg 1.5 1.0 0.5 0.0 4000 4500 5000 5500 6000 6500 7000 Firing Impulse, Ibf-sec

Pitch Angle for Firing at 0 deg Azimuth

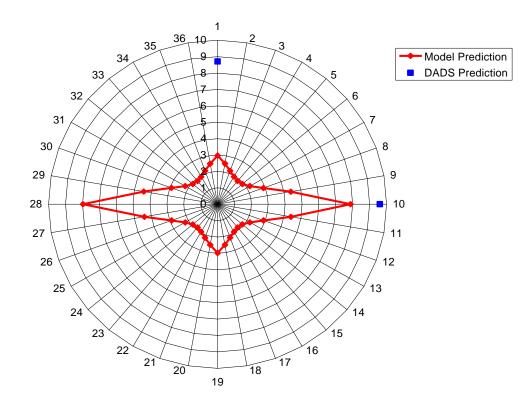
Crew Acceleration vs. Peak Firing Force

Analysis of Response at 0 deg Traverse

- Cannon firing impulse is a key design variable for reducing vehicle reaction angle
- Peak firing force is a key design variable for reducing crew acceleration
- Nominal design has reaction angle of 1.8 deg and a crew acceleration of 1.1 g
- Plots of vehicle response versus other parameters are included in the back-up slides

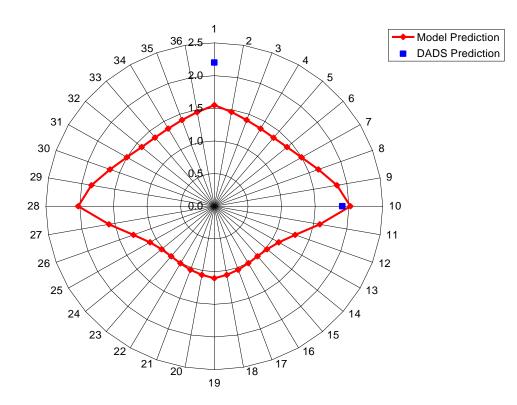

- Firing response is calculated as a function of traverse
- Results are presented using a polar plot (360 degrees of traverse) showing a top view of the vehicle
- Results are vehicle reaction angle and crew acceleration versus cannon azimuth
- Simulation uses 120 mm cannon with a firing impulse of 5700 lbf-sec and recoil stroke of 20 in
- Two 18 ton vehicle designs are presented: an 8x8 wheeled design and a tracked design
- Data points from DADS simulations are also plotted

DADS Simulation: Time Based

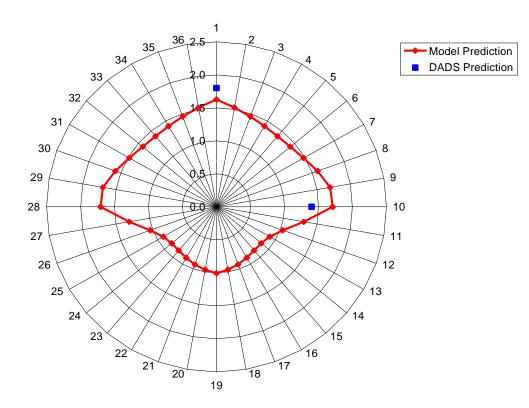

Reaction Angle for Wheeled Vehicle

Reaction Angle versus Azimuth 18 Ton Wheeled Vehicle with 120 mm Cannon

Reaction Angle for Tracked Vehicle


Reaction Angle versus Azimuth 18 Ton Tracked Vehicle with 120 mm Cannon

Page 18


Crew Acceleration for Wheeled Vehicle

Driver Acceleration Versus Azimuth 18 Ton Wheeled Vehicle with 120 mm Cannon

Crew Acceleration for Tracked Vehicle

Driver Acceleration Versus Azimuth 18 Ton Tracked Vehicle with 120 mm Cannon

Analysis of Response for 360 deg Traverse

- Reaction angles increase rapidly as the cannon traverse approaches 90 deg
- Crew acceleration is not as affected by cannon traverse
- Tracked design has approximately 5% higher reaction angle than the wheeled design
- Tracked design has approximately 25% lower crew acceleration than the wheeled design
- These results indicate that the tracked vehicle is dynamically more suitable for mounting a cannon
- Differences are primarily due to the higher trunion and higher CG locations on the wheeled vehicle design

Comparison of Model Results with DADS Analysis

- The model predicts lower pitch angles and higher roll angles than the DADS model. This is primarily due to the model assuming a rigid suspension (no springs/dampers), exaggerating the the effects of the long/narrow vehicle footprint on the ground
- The model predicts slightly higher crew accelerations than the DADS model, primarily due to the lack of suspension springs/dampers that would reduce peak acceleration values
- The Physics Based model can be run very quickly to close in on an approximate answer. The more detailed and lengthy DADS model can be run for more precise results

United Defense

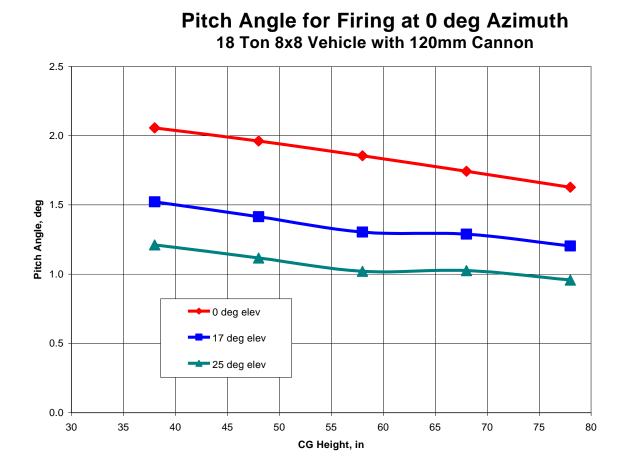
Back-up Slides

Page 23

Back-up Slides

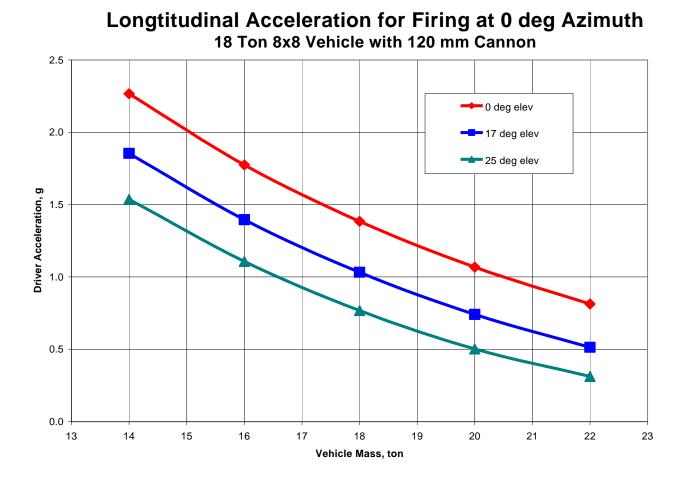
- Back-up slides show how trend analyses an be performed to define the design space for a light vehicle armed with a cannon
- Plot maximum reaction angle vs. different input parameters to display trends
- Plot maximum crew acceleration vs. different input parameters to display trends
- Simulation uses 120 mm cannon with a firing impulse of 5700 lbf-sec and recoil stroke of 20 in
- Vehicle is an 8x8 wheeled design with a weight of 18 tons

Reaction Angle vs. Vehicle Mass

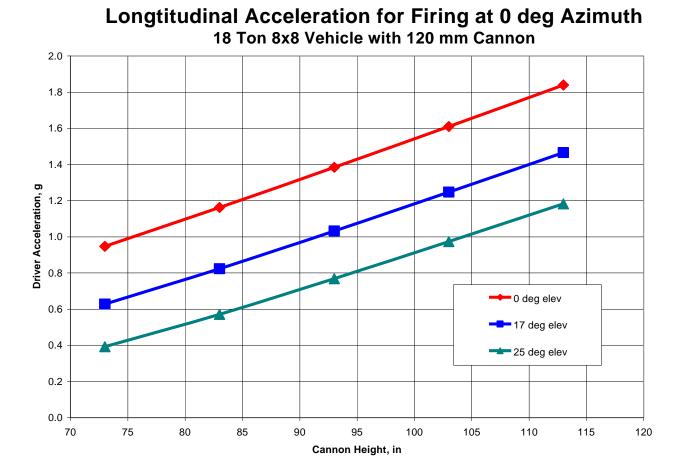

Pitch Angle for Firing at 0 deg Azimuth 18 Ton 8x8 Vehicle with 120mm Cannon 3.0 0 deg elev 2.5 ----- 17 deg elev 📥 25 deg elev 2.0 Pitch Angle, deg 1.5 1.0 0.5 0.0 13 14 15 16 17 18 19 20 21 22 23 Vehicle Mass, ton

Reaction Angle vs. Cannon Height

Pitch Angle for Firing at 0 deg Azimuth 18 Ton 8x8 Vehicle with 120mm Cannon 3.0 2.5 2.0 Pitch Angle, deg 1.5 1.0 0 deg elev 17 deg elev 0.5 🗖 25 deg elev 0.0 70 75 80 85 90 95 100 105 110 115 120 Cannon Height, in


Reaction Angle vs. CG Height

United Defense



Page 27

Crew Acceleration vs. Vehicle Mass

Crew Acceleration vs. Cannon Height

Crew Acceleration vs. CG Height

1.6

1.4

1.2

Longtitudinal Acceleration for Firing at 0 deg Azimuth 18 Ton 8x8 Vehicle with 120 mm Cannon

Driver Acceleration, g 8.0 9.0 🗕 0 deg elev 0.4 - 25 deg elev 0.2 0.0 30 35 40 45 50 55 60 65 70 75 80 CG Height, in

Trend Analysis at 0 deg Traverse

- Cannon impulse, elevation angle, and traverse angle are the primary drivers for reaction angle
- Peak trunnion force, elevation angle, and traverse angle are the primary drivers for crew acceleration
- Cannon height is key design variables for reducing reaction angle and crew acceleration
- Vehicle CG height is not as important a design variable
- Nominal design has reaction angle of 1.8 deg and a crew acceleration of 1.1 g