5-Inch Shotgun Projectile (KE-ET)

Luke Steelman, Code G32 Naval Surface Warfare Center Dahlgren, VA steelmansl@nswc.navy.mil (540) 653-4984 DSN: 249-4984

- Overview
- Why We Started This Program
- Design
- Modeling & Simulation
- Testing
- Conclusions

- Program initiated Fall '02 as a demonstration in support of ADM Ulrich's Hip-Pocket Task Force
- Designed to combat threat of small highspeed craft
- Qualification testing is underway
- Shipboard test in June '03

Shotgun Projectile Why We Started This Program

Engagement of Personnel Target

Includes all GWS errors for stationary targets
 Does not include moving target prediction error

Shotgun Projectile Design

Leveraged Off 5-Inch HE-ICM (Cargo) Projectile Program

* Existing parts from FY98 Procurement

Shotgun Projectile Design

- Structural FEA conducted on all new parts
 - Validated with 6 round test using High Energy Propelling Charges
 – no anomalies
- Weight, CG, moments of inertia all match or improve upon those of the Cargo Projectile and HIFRAG
 - > Validated with ranging test
 - Tighter dispersion than HIFRAG and Cargo

Shotgun Projectile Modeling and Simulation

- Modeled the dispense and flight of the shot shell pellets
- Visual Basic v6.0
- Modeling parameters (sample):

Shell Flopenes	Ĩ	Projectile Properties	
Shell Velocity (ft/s)		Material Density (lb/in^3) [
Approach Angle (deg)		Drag Scale Factor (i)	Í
Spin Rate (Hz)			1
Detonation Altitude (ft)		Pellets	Drag Table
Ejection Velocity (It/sec)			
Wind Conditions		- Modeling Conditions	
Range Wind (ft/sec)		Tolerance	1
Proce Wind (It Jean)	<u> </u>		
Pross with fursest	20	Select Flight Terminatio	n Condition
Air Density (slugs/ft^3)		14.	
Air Density (slugs/f(*3) Air Temperature (F)			
Air Density (slugs/ff^3) Air Temperature (F)			

Inputs	Terminal Conditions	Outputs
Projectile Terminal Conditions at Burst Point	Surface Impact	Pellet Location Relative to Burst Point
Pellet Physical Properties & Locations in Shell	Stop on Time	Pellet Velocity Vector
Meteorological Conditions	Stop on Range	Pellet Terminal Kinetic Energy

Shotgun Projectile Predicted Fragmentation Patterns

Patterns Validated Against Empirical Data Accurate to 7.5% in Length, 3.5% in Width

Shotgun Projectile Modeling and Simulation

High-Speed Video Capture of Airborne Fragment Pattern Just After Expulsion

- JTCG/ME Accredited Model
- Shows Lethal Areas of Blast and Fragmentation Warheads

- Monte Carlo Model (JTCG/ME Accredited)
- Random maneuvering path
- High speed target
- Personnel in open boat
- Personnel description meets ONI criteria
- MK 86 fire control error budget used
- X, Y, Z burst points for every round fired for all engagements

Shotgun Projectile Simulated Engagement

Shotgun Projectile Target Test

Shotgun Projectile Test Results

- The KE-ET projectile shows, from both testing and modeling, significant effectiveness improvement over current 5-Inch rounds
- KE-ET Advantages
 - > Better lethality against given target set
 - > Better IM properties
 - Potential for upgrade
- Compatible with High Energy Propelling Charges

- Upgraded payload
 Different pellet sizes and materials
 Flechettes
- Upgraded payload capacity
 Aluminum base plug
 Composite materials
- Increased muzzle velocity
 > Higher energy propelling charges
- Forward expulsion system
 Similar to Army Beehive Round