ChemImage Copyright

Raman Chemical Imaging Provides Rapid, Non-Invasive and Reagentless Biothreat Detection

Session VIII: Technology Forum Focus Groups Group I: Chemical/Biological/Explosive Detection & Security

> Steven Vanni ChemImage Corporation 7301 Penn Avenue Pittsburgh, PA 15208 m: (412) 478-3504 f: (412) 241-7311 vanni@chemimage.com www.chemimage.com

ChemImage Copyright

Raman Chemical Imaging Provides Rapid, Non-Invasive and Reagentless Biothreat Detection

In cooperation with:

Dr. Ted Hadfield Dr. Kathy Kalasinsky Dr. Vic Kalasinsky *Armed Forces Institute of Pathology*

Dr. Steve Christesen Dr. Alan Samuels Janet Jensen *US Army, Edgewood Chemical & Biological Center*

Dr. Jay Eversole Naval Research Laboratory

Dr. Patrick Treado Dr. Matthew P. Nelson Dr. Charles W. Gardner Julianne Wolfe Dr. Robert Schweitzer Jason Neiss *ChemImage Corporation*

Steven Vanni ChemImage Corporation

vanni@chemimage.com www.chemimage.com

Homeland Security 19th Annual NDIA Security Division Symposium and Exhibition 18 June 2003 Reston, VA

ChemImage Copyright Chemical Imaging - Molecular spectroscopy and digital imaging for chemical analysis of materials

Raman image of

Component A

Raman image of

Component B

- Fast, noncontact & nondestructive
- Spectroscopy provides fingerprint for material

HOW DOES CHEMICAL IMAGING WORK?

ChemImage Copyright

Raman Spectra

Polymer Blend Microscope Image

Chemical Image

30µm

- High performance plastics (ex. car bumpers) are blends of polymers
- Chemical imaging improves cost performance

ChemImage Copyright Chemical Imaging Techniques

• Chemical Imaging integrates multiple, orthogonal detection strategies

ChemImage Copyright Chemical Imaging vs. Competitive Chemical Imaging Technology

ChemImage Technology Acquisition Time: 10 Seconds Information Content: 256,000 Pixels

BS

Conventional Microscopy

Conventional Technology Acquisition Time: 2.8 Hours Information Content: 1024 Pixels

- Why is ChemImage's Technology Unique?
- Requires No Sample Pre-Treatment
- Rapid Analysis Time: Typically 5 Minutes or Less
- Valid Results: No Need for Additional Tests
- Not Limited to a Specific Biothreat Agent
- Has the Ability to Detect Multiple Agents
- Readily Adaptable to New Biothreat Agents

BG

ChemImage Copyright ChemImage Instrumentation Platforms

Micro

Macro

Remote

- CONDOR
 - Large surface area analysis
 - Macro/Micro zoom optics
 - NIR, Raman, PL, Fluorescence, Color

- Real-time video imaging
- Laser Raman spectroscopy
- NIR, Fluorescence & Raman Chemical Imaging

- Dispersive Raman platform
- High definition imaging
- 250nm spatial resolution
- Entry level systems
- Volumetric imaging capable
- Raman, PL, Fluorescence, NIR, Color

ChemImage Copyright ChemImage Application Examples

Implant: 2.0 x 10¹⁵ As cm²

Raman imaging has unparalleled sensitivity for ion implantation

- 3D Raman Chemical Image (Normalized Data) 3D Raman Chemical Image (Deconvolved Data)
 - Volumetric Raman Chemical Imaging provides non-destructive whole object molecular imaging

Biothreat Detection

- Molecular analysis complicated and difficult for mixtures of really small things
- Bioagents are the hardest: small, complex organisms, in cluttered backgrounds
- Bioagents are usually invisible, odorless, taste-free; human senses can not recognize when exposure has occurred

How are We Addressing the Problem?

- Molecular *chemical imaging* technology has demonstrated great promise in addressing this problem
- Works even for single bacteria ... and... orders of magnitude faster than conventional techniques
- Chemical molecular identification possible now being validated with Government Labs (AFIP, ECBC, NRL)

ChemImage Copyright Chemical-Biological Warfare Threat Detection and Identification Methods

ChemImage Copyright Raman Spectra of Anthrax Spores

Using a ChemImage FALCONÔ Raman Chemical Imaging Microscope

ChemImage Copyright Raman Spectra are reproducible

AFIP Samples – *B. Anthracis* in Sporulation Broth Dispersive Raman Spectroscopy – 10 Different Regions of Interest

- Statistical Analysis (F-Test) indicates reproducibility to 95% confidence level
- Collected with FALCON Raman Chemical Imaging Microscope
- Data Acquisition Time: 60 sec/spectrum

ChemImage Copyright Raman Spectra of RAAD Program BG Spores

Using a ChemImage FALCONÔ Raman Chemical Imaging Microscope

ChemImage Copyright Bacillus Anthracis Limit of Detection Using Raman Chemical Imaging

Fused Raman/Optical Image

Spore Density (# of Spores/cm² x 10⁵)

Single Spore Detection in 25 sec

Raman Analysis of BG/Aspergillus terreus Mixture

Using a ChemImage FALCONÔ Raman Chemical Imaging Microscope

Raman Image

BG conidia of A. terreus

ChemImage Copyright

Preliminary Receiver Operator Characteristic (ROC) Curve Bacillus anthracis Discrimination Assessment

ChemImage Copyright Chemical Imaging Analysis of Mixtures

- Mixtures are not homogeneous on the microscopic scale
- Spectra obtained from different sample locations are different
- Chemical Imaging (i.e. spatially-resolved spectroscopy) rapidly provide a set of spectra incorporating these variations
- Data analysis tests set of mixture spectra against all of the compounds in its library and determines the compounds in its library likely to be present
- A ranking system selects and reports the compounds present

Results of Automated Identification

ChemImage Copyright Raman Chemical Imaging of Anthrax on Food & Bodily Fluids

Using a ChemImage FALCONÔ Raman Chemical Imaging Microscope

Raman Chemical Image

Raman Chemical Image

ChemImage Copyright Blind Study of BG/Mucin Samples

Sample 1 ++2 -3 ++4 5 ++ 6 7 ++8 9 10 ++

Predicted

Actual

*Sensitivity (true positive rate): %Sensitivity = (TP/(TP+FN))*100, where TP = true positives and FN = false negatives.

*Selectivity (true negative rate): %Selectivity = (TN/(FP+TN))*100, where TN = true negatives and FP = false positives.

ChemImage Copyright EAGLE Transportable Microscope System

- ChemImage has successfully demonstrated its EAGLE Transportable Microscope System
- Anthrax (simulant) detected in seconds comparable to FALCON
- EAGLE can automatically identify presence of biothreat by using Biothreat Database
- Features
 - Fluorescence, Colorimetric Chemical Imaging (targeting)
 - Dispersive Raman Chemical Imaging (identification)
 - Wireless and Remotely Controlled
 - Live Digital Video

Fluorescence Chemical Imaging BG/Diesel Soot/Road Dust Mixture

Bacillus globigi (BC) Diesel Soot Road Dust (non fluorescing)

ChemImage Copyright Conclusions

- Chemical Imaging detection is non-invasive, non-contact and does not require significant sample preparation or reagents
- ChemImage technology can allow users (physicians, law enforcement, soldiers, researchers) see and identify materials (cancer, biothreats, evidence) that you can't detect now
- Chemical Imaging is inherently orthogonal, integrating multiple detection strategies into the same system
- Normal Raman spectroscopy is highly selective and sensitive (single spore detection demonstrated) when targeted
- Optical imaging and fluorescence imaging sensitive means for targeting
- Chemical Imaging provides excellent sampling statistics, which compensates for spore to spore variability and enables morphometric assessment
- Widefield illumination important for Chemical Imaging
- Near term deployment of Chemical Imaging technology conceivable, based on mature, commercially available Raman technology
- Technology scalable
 - Field transportable technology demonstrated
 - Fully portable technology feasible
 - Basis for a hand held point Chemical Imaging sensor

