INVESTIGATION OF IM BENEFITS FOR NAVY APPLICATIONS

Patrick N. Carlton, Orion International Technology, Inc.David M. Osborn, Sverdrup Technology, Inc.Robert E. Hester, Orion International Technology, Inc.

Approved for public release; distribution is unlimited.

Overview

- Introduction
- Munitions Complements Costs
 - IM Fill Compared to Standard Fill
- Accident Consequence Evaluation (ACE)
 - Production Plant
 - Port Facility
 - Carrier
- Munitions Flow
 - Port Efficiency (Storage)
 - Carrier Efficiency (Flow Model)
- Summary

Introduction

- Major Department of Defense (DoD) Insensitive Munitions (IM) objectives include enhancing safety and reducing life cycle costs.
- This work supports the DoD objective in its examination of safety and cost issues.
- It is part of the Navy IM Technology Transfer Program (IMTTP) to improve ship, personnel, and aircraft survivability and encompasses consideration of activities at the plant, port and carrier.
- It shows that IM provide significantly reduced accident consequences and improved efficiency in storage and handling at a meager increase in munitions cost.

IM Fill vs Standard Fill Costs Munitions Complement I

M	unition N	lumber	Cost Standard	IM0	IM1	IM2
A	8		22	29	37	38
D	5	6	1260	1316	1366	1366
E	1	8	1033	1089	1107	1143
F	2	<i>,</i>	1750	1752		1753
G	2	<i>,</i>	400	400		401
	Total Co	ost (\$K)	4465	4585		4701
	Cost Ratio: $IMO/Standard = 1.027:1$					
	IM2/Standard = 1.053:1					

IM Fill vs Standard Fill Costs Munitions Complement II

Μι	inition Number	Cost	Standard	IM0	IM1	IM2	
Η	10		243	296	313	355	
Ι	6		138	138	160	169	
J	6		295	327	337	362	
K	6		180	195	202	211	
L	22		33	44		55	
M	14		2520	2523		2526	
Ν	62		5146	5149		5151	
P	48		24672	24682		24696	
G	4		800	801		803	
Q	6		960	963		965	
	Total Cost (\$K)		35116	35312		35552	
	Cost Ratio: $IMO/Standard = 1.006:1$						
		IM2/St	tandard =	1.002:1			

IM Fill vs Standard Fill Costs Standard Bomb vs Complex Munitions

ACE Production Plant

Mixing Facility HC/D 1.6/1.1 Cost Ratio: IMO/Standard = 94%IM1/Standard = 94%IM2/Standard = 94%Melt/Pour Facility HC/D 1.6/1.1 Cost Ratio: IMO/Standard = 0.59%IM1/Standard = 0.68%IM2/Standard = 0.98%

ACE Ship at Pier

HC/D 1.6/1.1 Cost Ratio: IM0/Standard = 0.004:1 IM2/Standard = 0.004:1

ACE

Port Transportation

Classification	Asset Value (\$M)	Ratio (IM/Standard)
	Road	
HC/D 1.1	43.5	1
HC/D 1.2.3	1.96	0.045
HC/D 1.6	0.337	0.0077
	Rail	
HC/D 1.1	251.3	1
HC/D 1.2.3	6.35	0.025
HC/D 1.6	2.472	0.0098

Convoy: 5 Semi-Trailers, 3 Munitions Complements I

Train: 2 Locomotives, 20 Railcars, 26 Munitions Complements I

ACE Carrier

Classification	Asset Value (\$M)	Ratio (IM/Standard)
	Complement	t I
HC/D 1.1	390.3	1
HC/D 1.2.3	330.3	0.85
HC/D 1.6	3.9	0.01
	Complement	II
HC/D 1.1	401.5	1
HC/D 1.2.3	335.2	0.83
HC/D 1.6	4.2	0.01

Port Ef Storage

Carrier Ef Flow Model

ProModel Process Simulation Tool

Stochastic – Discrete Event

Constraint – Throughput Comparison

2 bomb types, 2 component types assembled into 2 weapon types delivered to 2 A/C types.
2 missile types tested and delivered to 2 A/C types.

Carrier Ef Flow Model

	Delivery times (min)			AC Depa	AC Departures			
	w1	w1	m1	m2	AC1	AC2	AC3	AC4
			Standard	d Process f	rom Magaz	zine		
min	102	95	22	20	9	28	2	2
max	159	165	156	157				
avg	127	134	89	88				
			Read	y Weapons	on X Deck	ζ.		
min	12	14	10	10	9	28	2	2
max	173	192	156	151				
	76	96	59	57				

Summary

Munitions Costs

IM fill does not significantly increase cost of

Typical Flight Deck complements of munitions (0.9% - 4%)Sophisticated complex all-up rounds (0.6% - 8.7%)

Accident Consequence Evaluation (ACE)

IM (HC/D 1.6) provide significant accident cost reduction

Plant (96% – 99.4%)

Port (96% – 99.9%)

Carrier scenarios (98% – 99.6%)

Munitions Flow

IM (HC/D 1.6) significantly improve munitions efficiency Port Facility storage capacity (2.5:1 – 5:1) Carrier dynamic Air Tasking Order response (>50% reduction in delivery time)