

A System Approach to IM for Solid Rocket Motors

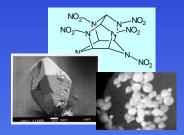
Composite Cases & Reduced Sensitivity Propellants

Mike Fisher

NATO Insensitive Munitions Information Center – NIMIC

Paul T. Johnsen

Naval Air Warfare Center Weapons Division


IMEMTS - 11 March 2003

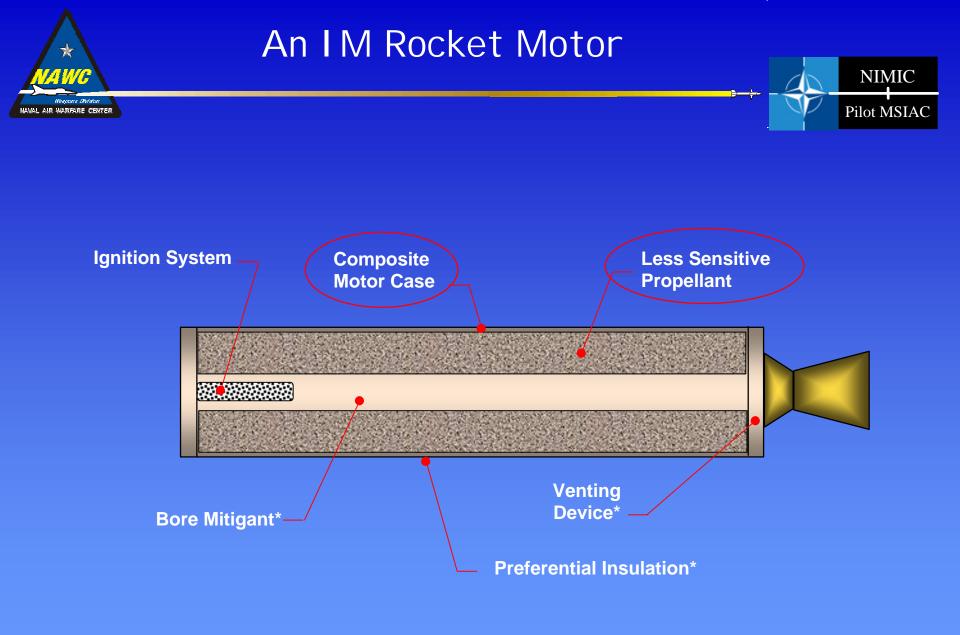
Approved for Public Release; distribution is unlimited

Introduction

Part 1: IM Rocket Motors

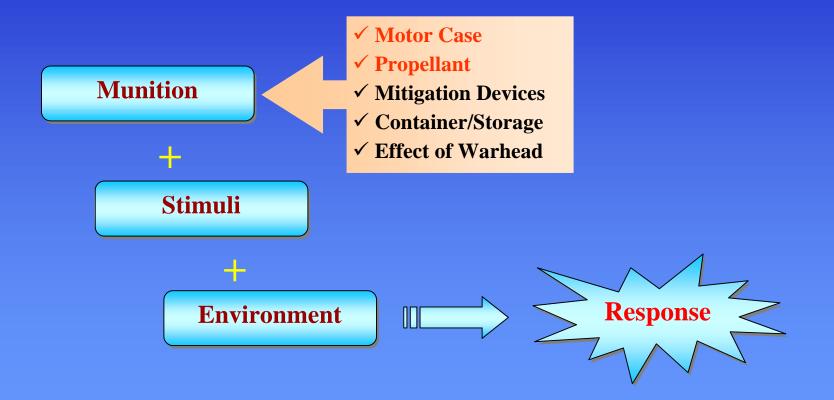
- Tradeoffs, "building in" IMness
- Reduced sensitivity propellants
 - Characteristics
 - Examples
- Composite Motor Cases
 - Benefits
 - Examples, IM test responses

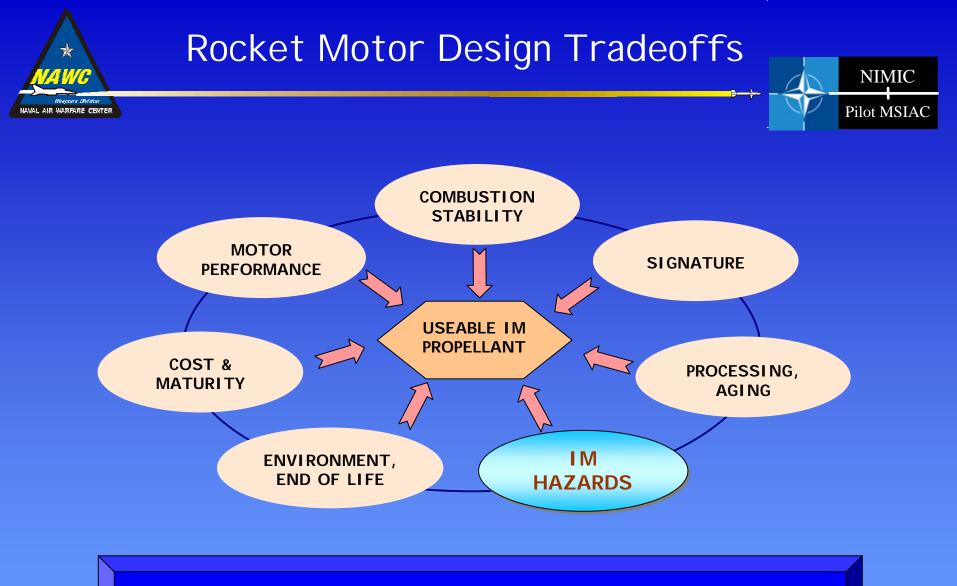
NIMIC


Pilot MSIAC

AVAL AIR WARFARE CENTER

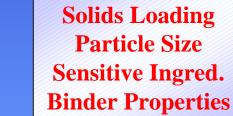
Part 2: 21-inch Pulse Booster
 Example of motor with IMness built-in




*Examples of Mitigation Techniques

IM – A Systems Approach

Can the designer increase propellant IM-ness without compromising other system requirements?


IM Propellant Characteristics

Absorb Energy, Deform with Minimum Damage

ENERGY MANAGEMENT-PARTITIONING

?

Difficult to Ignite: Smolder / Extinguish

ENERGY MANAGEMENT- PARTITIONING

- Reduce Solids Loading
 - Develop new oxidizers
 - Use energetic binder system
 - Use high-density Additives

- Control particle size/ distribution
- Use low ignition temperature binders
- Use less-sensitive ingredients
 - Reduce nitramines, AP
 - Change ballistic modifiers

Not new concepts – How have we done in the past 10 years?

NIMIC Pilot MSIAC

SNPE & CELERG (France)

Energetic low-signature, cross-linked DB propellants

Nitramites: High level of shock sensitive ingredients

XDT or "bore effect" seen by developers as the main IM issue

Formulated to prevent XDT reactions to Bullet Impact

HTPE

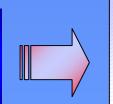
Alliant Techsystems, NAWC, NAMMO Raufoss

Family of propellants based on hydroxy-terminated polyether binder

- Reduced Solids Loading Energetic Plasticizer
- Reduced Level of AP Energy Partitioned Using 2nd Oxidizer (AN)
- ✓ Good Elongation

Permits lower % solids at equivalent Isp of comparable HTPB propellant

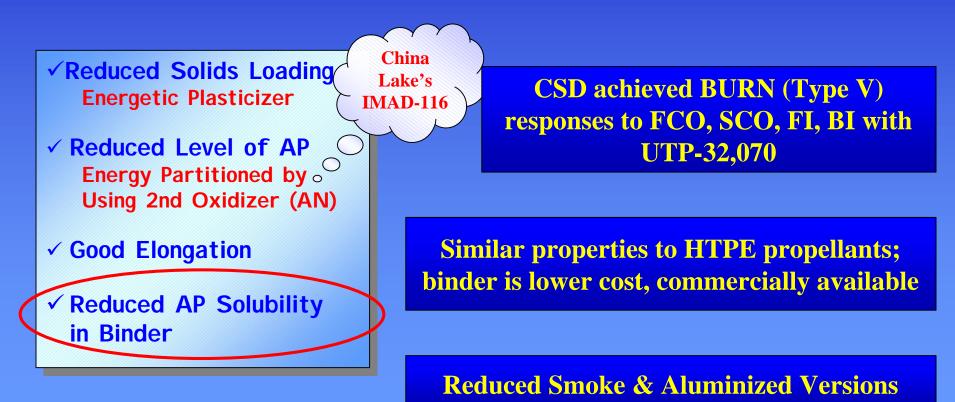
10% Ammonium Nitrate


Reduced Smoke & Aluminized Formulations

HEIGEARS ONFROM WEIGEARS ONFROM NAVAL AJR WARFFARE CENTER		NIMIC Pilot MSIAC		
	Characteristic	НТРВ	HTPE	
What about the	Isp * ? (lb-s/in ³) reduced smoke	<u>> 15</u>	<u>></u> 15	
design tradeoffs?	Burn Rate @ 1000 psi (in/s)	0.3 – 1.5	0.3 – 1.2	
	Pressure Exponent	~ 0.5	~ 0.5	
	Failure Stress @ 77°F (psi)	120	170	
	Failure Strain @ 77°F (%)	40	50	
	Modulus @ 77°F (psi)	600	500	
	Pot Life (hours)	10	20	
	Shock Sensitivity (NOL Card Gap)	0 cards	0 cards	

IM TEST	Configuration (10-inch Analog Motors w/Graphite Composite Cases)		
	HTPB	НТРЕ	
Slow Cookoff	Explosion	Burn	
Fast Cookoff	Burn	Burn	Advantage
Bullet Impact	Deflagration	Burn	
Fragment Impact	Explosion	Extinguish	
	·		

IM Performance Not as Impressive Expect Significant Improvement with Composite Case


HTCE

Pilot MSIAC

Pratt & Whitney (CSD) & NAWCWPNS China Lake

AVAL AIR WARFARE CENTER

Family of propellants based on HTCE – block copolymer of polyTHF & polycaprolactone

Other Examples?

Additional Examples, for various propellant types, in RTO paper (NIMIC O-74)

Includes discussion of new ingredients

NIMIC

Pilot MSIA

Next version of NIMIC's EMC to include rocket propellant update

Input sought from IM community

Why Composite Cases?

NAVAL AIR WARFARE CENTER

To reduce motor response to fuel fire: reduce confinement

Reduce the "deadly" fragments in resultant debris

Weaken during FCO→ Burn, or low pressure burst

More effective when combined with less sensitive propellant

Improvements in FI & BI response (For some propellants)

Composite Case IM Response

 NIMIC

 Pilot MSIAC

Example: early (1980s) IMAD effort:

IM Test (per MIL-STD-2105)	Composite Case 6-in (15.2 cm) Ø	Monolithic Steel Case 6-in (15.2 cm) Ø	
Fast Cookoff	Burn (V)	Explosion (III)	
Slow Cookoff	Explosion (III)	Explosion (III)	
Bullet Impact	Burn (V)	Propulsion (IV)	
Fragment Impact	Burn (V)	Deflagration (IV)	
What happens if we combine composites with IM propellant?			

Using "garden variety" HTPB/AP propellant

Evolved Seasparrow

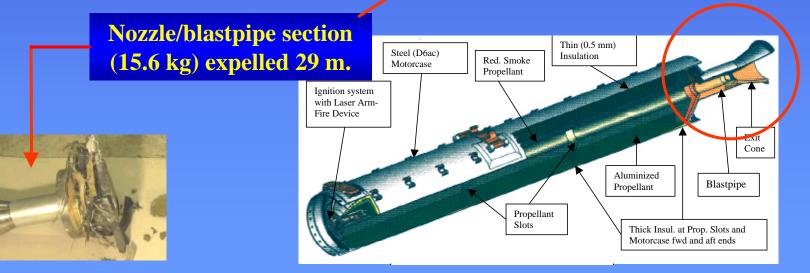
NAVAL AIR WARFARE CENTER

ESSM Composite Motor

Technology Program conducted by NAMMO Raufoss

Achieved significant improvements in IM response

Photographs courtesy of NAMMO Raufoss AS



Evolved Seasparrow

Comparison of IM Responses – Baseline ESSM vs. ESSM Composite

IM TEST	ESSM Baseline (OHEB Evaluation)	ESSM Composite (NAMMO Evaluation)	
Fast Cookoff	Explosion (III)	Burn (V)	
Slow Cookoff	Explosion (III)	Deflagration (IV)	
Bullet Impact	Burn (V)	Burn (V)	
Fragment Impact	Deflagration (IV)	Burn (V)	

Propellant development primarily driven by performance

IM-ness is one of several competing requirements

Formulations, ingredients & techniques exist. Designer can reduce sensitivity to IM hazards without compromising system requirements

Propellant is only part of the equation – it must be integrated into a system approach for true IM-ness!

Composite Cases are another integral part of a system approach: Is the technology mature?

Background and Objectives

- MK-72 Largest VLS Compatible Booster
- Issues
 - All Up Round System Weight Limit 6500 lbs
 - MK-72 High Mass Flow Rise Rate
 - Limits System Growth Potential
- Design, Build and Test MK-72 Size IM Compliant Booster

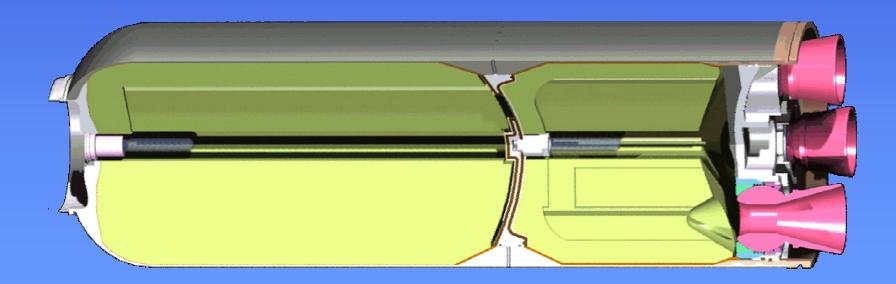
Motor	SCO	FCO	BI	FI
MK-72 Bare	Detonated	Deflagrated	Exploded	Burned
MK-72 Encannistered	N/A	Exploded	Exploded	N/A
21" Pulse Bare	Exploded	Burned	Deflagrated	Deflagrated

Pilot MSIAG

- Systems Engineering Approach
 - Included "building-in IMness"
- Energy Managed System 2 Pulse Motor
- IM Aluminized AP/AN/HTPE Propellant
- Use Composite Case
 - Better IM performance in FCO, BI and FI
 - Reduction of collateral damage
 - Lighter weight
- Design to use Existing Aft Closure and TVA
 - 4 Moveable Nozzles

Maintain Similar System Performance

21" Pulse Booster

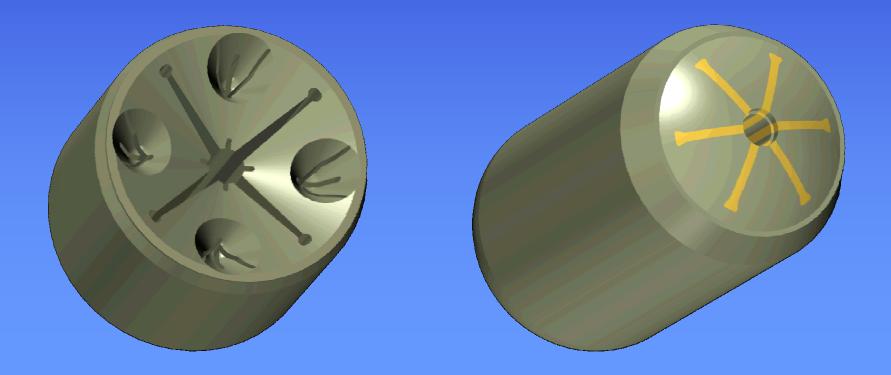


Pulse 2

- HTPE/AI/AP/AN propellant
- BKNO3 igniter
- Foam fins left in place

Pulse 1

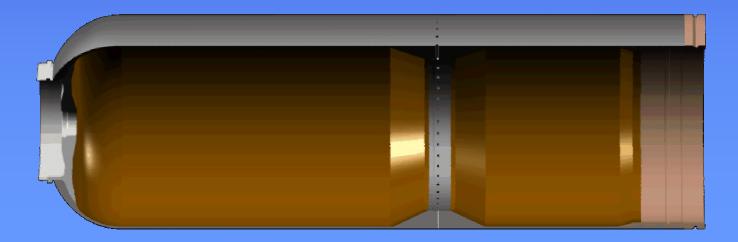
- HTPE/AI/AP/AN propellant
- BKNO₃ Igniter
- Highly configured grain design



Propellant Grain Designs

Pulse 1 High A_b Target $r_b = 0.7$ ips @1000psia Neutral Ballistics

<u>Pulse 2</u> 6 fin design Foam fins remain after casting



Case Design Overview

Composite Structure: IM7 Fibers with Epoxy Resin

- Kevlar Overwrap
- Wound in Forward and Aft Metal Sections
- Integral Bulkhead Boss
- Integral Insulation
- MEOP 2000-2300 psia
- Performance Parameters per WS25448

Bulkhead Design

NIMIC Pilot MSIAC

Port covers

Insulation

4130 Steel Structure

 48 Bolt holes; floating nuts

 Elastomerized Silica Phenolic Insulation
 Large Port Area For Low Gas Velocity
 Graphite Fiber Port Covers

Steel structure

NAVAL AIR WARFARE CENTER

Installing pulse 2 mandrel in case

Positioning pulse 1 mandrel

Final pulse 1 grain

Pulse 2 grain former in place

Pulse 1 propellant

Mandrel plunge

Fast Cook Off Test

- Bikini Gauge Overpressures
 - 0 0.95 psi @ 50'
- No Pieces Outside of Pit
- Two Events

WAVAL AIR WARFARE CENTER

- First at 6:30 probably pulse 2
- Second at 12:30 probably pulse 1

Aft closure

Bulkhead

Slow Cook Off Test

Bikini Gauge Overpressure

- 2.8 3.7 psi @ 50'
- Piece distribution

AVAL AIR WARFARE CENTER

- Pulse 2 case section and fwd polar boss 556' from stand
- Hypothesized pulse 2 went propulsive, broke on impact with burm. It burned where it came to rest.

Bullet Impact Test

 Bikini Gauge Overpressures

 1.9 - 2.8 psi @ 50'

 One Bullet Hit Motor
 About half of the propellant recovered
 Poor liner/propellant bond

JAVAL AIR WARFARE CENTER

Bullet Impact Photos

Weepons Division

NAVAL AIR WARFARE CENTER

Pulse 1 case section

Bulkhead build-up section

Inside of pulse 1 section

Fragment Impact Test

Very few pieces went any distance

JAVAL AIR WARFARE CENTER

- Pulse 2 separated and burned 10' from stand
- Pulse 1 section of case shredded
- Some pulse 1 propellant pieces found

Post-test

È

Grain Designs

Pulse 2 6 fin design Foam fins remain after casting ~650 lbs propellant

Chukar Feet

Pulse 1High A_b ~310 lbs. PropellantTarget $r_b = 0.7$ ips @1000psiaNeutral Ballistics