

Development of IM Grenade Submunitions

Presented to:

NDIA 2003 Insensitive Munitions & Energetic Materials Technology Symposium

Donald A. Geiss, Jr.* US Army TACOM-ARDEC Explosives R&T Team (973) 724-7603 William V. Vogt US Army PM CAS M915 Program Manager (973) 724-5240 Keith E. Van Biert US Army TACOM-ARDEC M915 105mm Team (973) 724-3240

Harry K. Jackson, Jr.

VSE Corporation Lean Six Sigma (858) 385-1902

Outline

- Six Sigma
- 105mm M915 Projectile
- **PAX-2A**
- Six Sigma Black Belt Problem Statement/Impact/Goal
- Design of Experiments/Results
- Confirmation Testing
- Summary

Six Sigma

Started by Motorola in mid-80's

- Methodology to add robustness to processes
- Focused toward 3.4 defects per-million or less quality level
- Has evolved to a program of improvement across all avenues, providing phenomenal Return On Investment
- A *Structured Approach* to achieve a Continuous Measurable Improvement
 - Eliminates the "quick fix of the day" or "don't change anything" mentality
 - Employs proven tools like Quality Function Deployment (QFD), Process Maps, DOE, Failure Modes & Effects Analysis (FMEA), etc. in a Management-friendly manner
 - Enables Management control rather than hindering it
- Process Improvement Strategies proven Critical to Commercial Success

- Army Leadership Embraces Commercial Best Practices
 - Secretary of Army: Six Sigma
 - AMC CG: Lean
 - TACOM CG: DFSS/Six Sigma/Lean
 - AMC Quality Federation deploying across AMC
- Integrated Lean Six Sigma (L6s) training from VSE Corp provides a Recognized, Proven Business Solution that is
 - Agile workforce capable of efficiently and effectively addressing problems during changing technologies and shrinking budgets
 - Implement culture of "Fact Based Decisions"
 - Focused on Payback

Integrated Lean Six Sigma (L6s)

Design for Six Sigma

Lean Manufacture Robust Design

Voice of the Customer

First Time Quality

Minimize Parts

Simplify Design

Poka Yoke

Customer Satisfaction

Error Free Processes

Eliminate Waste

Identify Value Stream Improve Yields

Reduce Variability

lmprove Processes

Lean Designä

Six Sigma

The 105mm M915 DPICM System

105MM Light Towed Howitzer System M119A1

OBJECTIVE: To provide increased lethality for the Light Forces

PERFORMANCE:

- Max. Range
 - 14.2 km (M915 with M119 howitzer)
- Effectiveness/Lethality:
 - Personnel 2x M444 APICM
 - Material 63.5 mm into RHA

Grenade, DP: M80 Fuze, Self Destruct: M234 —

Picatinny Arsenal Explosive - 2A (PAX-2A)

• **PAX-2A**

- 85% HMX (Class 5)
- 9% BDNPA/F
- 6% CAB

• Comp A5

- 98.5% RDX (Type II)
- 1.5% Stearic Acid
- PAX-2A is the Leading IM Replacement for Comp A5 in Army Ordnance
 - Dramatic improvement in Bullet Impact (BI) and Sympathetic Detonation (SD) shown in M915
- Performance equivalent to better than Comp-A5

PAX-2A BI Results

Comp A5 BI Results

PAX-2A SD Results

Comp A5 SD Results

6s Black Belt Project Problem Statements

- Production-level manufactured PAX-2A explosive not acceptable for sustained high-speed loading
 - Safety Concerns
 - Excess spillage on the DZI rotary press
 - Smearing or flashing of pressed explosive on tooling
 - Loading process suspended after producing less than 300 grenades due to safety concerns.
- Thiokol PAX-2A manufacturing yield in USSS #20-80 mesh particle size produced lower than expected yield
 - Approximately 17% as compared to R&D mixes of 40-50%

Impact

- Cannot load grenades at normal 50,000 unit schedule between maintenance cycles (2-10 hour shifts)
- Smearing/flashing of PAX-2A explosive precludes high volume grenade loading
 - Culminate in "lock up of press"
 - Nests have to be cleaned mechanically in off-line labor intensive operation
- M915 DPICM would not be able to Materiel Release with PAX-2A IM explosive
- Future of PAX-2A for high speed loading applications in jeopardy
 - Cost prohibitive to produce at 17% yield

PAX-2A Manufacturing Process Cost Prohibitive

Black Belt Project Goals

- Increase yield and lower cost of Thiokol PAX-2A manufacturing process
- Develop a robust loading process that will yield 50,000 or greater grenades between scheduled maintenance cycles

Sequential DOE Approach

 DOE #1 – Establish baseline data and identify areas to increase yield

 DOE #2 – Evaluate particle size and flow additives for best value

 DOE #3 – Demonstrate robust process (50,000 units/cleaning cycle) for optimized manufacturing/loading

DOE # 1

Objective:

- Baseline Explosive Samples through DZI Rotary Press
 - Comp A5
 - USSS #20-80 R&D PAX-2A from 50 gal mixer
 - USSS #6-30 & 12-30 Particle size distributions from ATK/Thiokol 600 Gal production mixer

Results:

- Comp A5 runs with minimal explosive residue on press (i.e Steady State)
- USSS #6-30 & 12-30 PAX-2A has much higher yield potential and showed an improvement over USSS #20-80; however, spillage still occurring- Safety Issue
 - Excessive PAX-2A residue on punches and nests labor intensive operation to clean
 - Particle Segregations Occurring

Recommended Solutions:

• Research of various additives to improve flow & reduce press contamination

Yield from ATK/Thiokol Production Mixer

Overall Particle Size Distribution

Overall Particle Size Composition, 600-Gallon Production Mix #K370006

Yield potential increased from 17% to 62%

DOE #2

Objective: Evaluate Flow Additives & Mesh Size

- Ran 50 lbs of USSS #8-30 mesh and 25 lbs of USSS #6-30 mesh PAX-2A with 0.5% flow additive
- Conducted "mini-DOE" on loading parameters and effect on process SPC, TDP requirements and lethality performance

Results:

- USSS #6-30 mesh particle size is "best value"
- Additive successful in addressing smearing/flashing of explosive
- Established Loading parameters for PAX-2A in M-80 Grenade
- Repeatable Grenade LAP process
- Meet or exceed TDP requirements
 - Achieve greater than 3.0 inches penetration into Armor Plate

Recommended Solutions:

- Fabricate Hopper screen to 0.25 x 0.4 inch for larger 6 mesh particles (original 0.25 x 0.25 inch retained large particles)
- Verify if Additive will permit loading of fines without spillage

DOE #2 Results

PAX-2A- No Additive

Additive Successfully Reduces Flashing

Smearing on Tooling

Minimal Smearing on Punches

Objective:

- Larger Confirmatory Run USSS #6-30 & #8-30 with Additive
- Evaluate Hopper Larger Screen Size
- Evaluate fines with Additive

Results:

- Larger 6 mesh particles flow easily through new hopper screen
- Identified areas for further improvements in yield

Recommendations:

- Make confirmatory production run of USSS #6-30 mesh PAX-2A with Additive
- Pursue hopper & feed shoe redesign to reduce segregation and allow LAP of larger particle range to maximize available yield from ATK/Thiokol manufacturing process

Before Six-Sigma

After DOE #3

400:1

Improvement

USSS #20-80, No Additive 3 Minute Run Time USSS #6-30 with Additive 1200 Minute Run Time

Milestone Achievements

- 25 Jan 02 Six Sigma Team Conducted 1st Confirmation Production Run of 3,000 lbs. USSS# 6-30 PAX-2A with additive
 - Successfully loaded 69,125 M80 grenades at rate with no safety concerns
 - Performed 60 Day Predictive Surveillance Test to confirm no anomalies
- 10 June 02 Conducted 2nd Confirmation Run
 - Successfully loaded 65,280 M80 grenades for delivery to M915 program
 - Permits M915 program to field PAX-2A in M80
 - Way forward on other PAX-2A insertion programs for grenade submunitions
- 14 October 02 Completed 3rd Production Run 69,120 Grenades

M80 Penetration Test Results (Inches)

Minimum Requirement	1 st Production Maximum	1 st Production Minimum	Mean	Standard Deviation	Mean-3s
2.50	3.30	3.0	3.17	0.07	2.96

M915 Predictive Surveillance Test

- Issue
 - Confirm no degradation of grenade penetration performance due to:
 - Contraction/Expansion induced from thermal effects
 - Chemical Exudation leading to incompatibility with explosive train
- Plan of Action
 - Conduct JAN Cycle Environmental Conditioning of M80 Grenades loaded with PAX-2A and Composition A5 (-60°F to 160°F)
 - End Item M915 Projectiles
 - Bare M80 Grenades
- Testing
 - Withdraw sample grenades from test chamber (bare & downloaded from projectiles) @ 15 day intervals and penetration test into Armor Plate
- **Results**
 - All grenades fired (312) exceeded 2.5 inch penetration requirement (>3.0 inches)
 - No degradation in performance
 - No exudation or incompatibilities observed

Accelerated Aging/Cold Temp Test

Accelerated Aging:

- Objective: Investigate aging properties of PAX-2A treated with 0.5% flow additive.
- 60°C (140°F) at 30% Relative Humidity for 8 months.
- Aging Study initiated June 21, 2002
 - Thermal analyses, Safety Tests (ABL impact & friction, ESD, SBAT, etc), Cube Cracking, Mechanical Properties, Composition Analysis, Shock Sensitivity (LSGT), Critical Temperature

Cold Temp Test:

- Objective: Confirm no degradation of grenade penetration performance at system cold temperature requirement of -50°F
- All PAX-2A loaded grenades fired 3.0 inches or greater penetration into Armor Plate at -50°F
- No significant degradation from ambient

Six Sigma Tools used to Accomplish Program Goals

- Completed "Walk The Line Effort"
 - ATK/Thiokol- Explosive manufacturing, packing and shipping
 - DZI/Lone Star Powder delivery system and M80 Grenade loading
- Generated Process Maps identifying potential improvement points & Re-Walked The Line
- Back to Basics Brainstorming approach to address
 original customer requirements
 - Lethality Performance
 - Insensitive Munitions (IM)
 - Low Cost
- Developed Failure Mode Effects Analysis (FMEA) for processes
- Sequential Design of Experiments (DOE's)
- Confirmation Runs and Testing

• Met Objective

- Successfully demonstrated loading M80 Grenades with PAX-2A at an acceptable rate of greater than 50,000 grenades between maintenance intervals
- 400:1 Improvement in continuous run time
- Further Reduce the cost to the Customer / Warfighter to implement IM technology by applying Lean principles
 - Reduce drying cycle times
 - Optimize mixer yields
 - Complete hopper/feed shoe mods for wider range of particles
 - Implement upstream segregation improvements
 - Eliminate non-value added processes
- Lean Six Sigma techniques and integrated team approach provide the Best Buy for Government
 - Balance between manufacturing PAX-2A and grenade loading
 - Continually reduce cost while improving end item quality

Contributors

- Norm Frigon VSE Corp.
 - Six Sigma Consultation
- Dave Humes Alliant Techsystems (ATK)
 - Lean Six Sigma Implementation
- David Taylor ATK-Thiokol
 - PAX-2A Manufacture Program Management
- Jeffrey Widener ATK-Thiokol
 - PAX Explosives Development
- Dillard Baker Day & Zimmerman Inc (DZI)-Lone Star AAP
 - Grenade Manufacture Load Line Engineering
- Robert Ho TACOM-ARDEC AMMOLOG
 - Independent Test Funding