

NATO Insensitive Munitions Information Center

Cost Benefit Analysis Studies of the Introduction of Insensitive Munitions: Is IM Cost of Ownership Cheaper?

> By Pascal Marchandin (NIMIC) TSO Warheads & Fuzes

1 March, 2003

CBA Studies of the Introduction of IM

Introduction

- Brief Description of CBAM
- Cost Benefits Analyses:
 1st Study: Short Range Air-to Air Missile
 2nd Study: 155-mm Artillery Munition

Conclusions

Introduction

 June 2001: NIMIC organized the Costs & Benefits Analysis Workshop

- Definition of a set of requirements for a Cost Benefit Analysis Model
- Development of a promotion methodology of IM to the Stakeholders

• 2002-2003: Development & Validation of the CBAM

- Code development
- Validation studies
 - **Release of the code to the NIMIC Nations (May 2003)**

Cost Benefit Analysis Model -CBAM

- CBAM is primarily a tool to help calculate the cost differences of introducing IM into service
 - i.e. compares the cost of ownership of IM vs. Non-IM over the whole of the life of a munition
- It can also be used to calculate the cost of ownership of a munition

Description of the Model

CBAM calculates cost differences by:

Aiding in the creation of a life cycle for a munition type
 Life-cycle Tree creation component

Providing a structured method for compiling cost data
 Modules to account for cost differences arising from:

- Risk Assessment
- Direct cost

Calculates cost by means of a Monte Carlo Simulation > Takes into account the uncertainties

Life Cycle Component

Edit Calculation

Cost Module

irect Cost Module No of 155-mm-nolM Cost Units % Life Time = 0 % = 0 **Cost/Year** of Units Apply Units Mulitiplier Use Duration Duration Linked % Uncertainty Per Unit 0 Years Days % Uncertainty Apply Duration Mulitiplier + 0 (In Years) **Calculate** Category None % Uncertainty Overall Cost + Activate Edit Select From 0 Ŧ Description $\mathbf{\nabla}$ Use in Calculation Close Clear Data

1 March, 2003

Risk / Threat Module

Threat Database

Threats and Probability Database

Threats and the probability of experiencing a threat

Asset & Consequences Database

alculation Parameters

Assets and Consequences Database

Calculation

1st Study: Short Range Air-to-Air Missile

• Why:

- High-value munition on a high value platform
- Data availability in NIMIC

• Life Cycle (cradle-to-grave sequences):

- Peacetime (~24 years):
 - Storage (~ 90 % of the life cycle)
 - Transport (road, rail, sea and air)
 - Maintenance
 - Training
 - Disposal
 - **Crisis (6 months)**
 - > Deployment, operational training, etc
 - Conflict (1 month)
 - Platform vulnerability, Airbase and Ammo Dump vulnerability

SRAAM Cost Benefit Analysis: Lessons

- Main lessons (Small and High value missile High Value platform)
 - Limited benefits in transport
 - > No. of missiles transported limited by the volume
 - Consequences of accidents limited (low NEQ)

Limited benefits in peacetime storage

- Peacetime storage adapted to HD 1.1
- Consequences of accidents limited (low NEQ)

Main Benefits in Operations:

Training

Crisis and Peacekeeping operations (Armed helicopter)

- Reduced vulnerability of Air Bases
 - Reduced vulnerability of helicopters (Note: 1 or 2 % reduced vulnerability is enough to get significant cost-benefits)

2nd Study: 155-mm Artillery Ammunition

• Why:

- Low-cost munition on a relatively low-cost platform
- Data availability in NIMIC

• Life Cycle (cradle-to-grave sequences):

- Peacetime (~24 years):
 - Storage (~ 90 % of the life cycle)
 - Transport (road, rail, sea and air)
 - Maintenance
 - Training
 - Disposal
 - Crisis (6 months)
 - Deployment, operational training, etc
 - **Conflict (1 month)**

Platform vulnerability, Land base and Ammo Dump vulnerability 2003 IM&EM TS

1 March, 2003

155-mm Artillery Ammunition

IM LCC Benefits:

1 March, 2003

NIMIC

 $_{\text{pilot}} MSIAC$

155-mm Artillery Ammunition

Results presented earlier are mean value (Monte Carlo - linear distribution)

Max. Rate of Retu IM Investment: ~ 200 %

Probability of having a benefit:

 Variability of the input data (exposure, threat probability, munition reaction probability, consequence probability)
 Monte Carlo Runs

> Min. Rate of Return IM Investment: > 75 %

95.5 %

CBAM/CBA Studies: Capabilities & Limitations

• Too many uncertainties may give a meaningless result

Some IM benefits are not financial:

 The increased flexibility in operations
 The reduced logistics
 Some consequences of accidents, such limited access to zones where UXOs have been spread
 Operational, Health & Safety, Environmental and Political Benefits

Future of CBAM

 Any comments, recommendations, requirements for the Model are welcome

• Future ?

- Tool development and testing is now completed
- A *conversion* has been released early March 2003 to a limited number of testers
- Additional improvements before distribution:
 - life saving probability
 - Direct difference cost calculation (IM and non-IM version)
 - CBAM 1.0: May 2003

Conclusions

Storage benefits:

- Peacetime: very limited
- Conflict or Crisis: medium to high

Transport benefits:

- Munition dependent
- Nation dependent (exposure factor)

Benefits in operations (crisis or conflict)

- Reduced platform vulnerability
- Reduced ground base vulnerability

P Transport accident: political consequences?

Pascal Marchandin NIMIC Phone: +32(0)2.707.5426 Fax: +32.707.5363 Email: <u>p.marchandin@hq.nato.int</u> Web: <u>http://hq.nato.int/related/nimic</u>

CBAM Designer: Dr Michael W. Sharp

1 March, 2003