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• The vast majority of cannon lunched unitary warheads use melt pour
explosives for cost and surge capability

• Traditional melt pour explosives have focused on fragmentation
capability
– TNT
– Composition B

• A new family of low cost reduced sensitivity melt pour explosives
based on 2,4-dinitroanisole, RDX or HMX and AP has been developed
in response to IM requirements

– PAX-21 - Composition B replacement (in production for 60mm mortar)
– PAX-24 - TNT replacement
– PAX-25 - Composition B replacement
– PAX-28 - Dual purpose



• Start with proven DNANs/AP system
– Add Al for blast effect
– Investigate levels of solids for performance/processibility
– Evaluate effect of RDX versus HMX

• Compare to typical existing formulations
– Composition B
– PBXN-109

• Formulate the most promising compositions and test
– Bench performance tests for fragmentation
– Blast tests



• A practical, dual purpose, melt pour
explosive has been developed (PAX-28)

• Excellent blast characteristics
• Excellent bench scale fragmentation

performance
• Good IM performance



• Validate expected fragmentation performance
– Pit tests in several fragmentation munitions

• Quantity and mass distribution of fragments

– Arena tests in target munitions based upon user
requirements

• Quantity, mass distribution, velocity and orientation of
fragments

• Perform system level demonstrations
• Perform IM testing



:  
Table 1:  Formulations Evaluated by Mix Number
Mix # DNANs RDX AP Al RDX

or (wt%)
HMX Of

RDX&Al
HMX Containing
1 35 35 15 15
17 35 35 15 15
20 35 35 15 15
RDX Containing
30 40 20 20 20 50.00
31 40 30 20 10 75.00
32 40 30 15 15 66.67
33 40 50 0 10 83.33
34 40 30 0 30 50.00
35 40 10 0 50 16.67
36 40 0 0 60 0.00
37 40 27.5 0 32.5 45.83
38 40 17 10 33 34.00
39 40 11.5 15 33.5 25.56
40 40 6.4 20 33.6 16.00
41 40 0 30 30 0.00
42* 40 22.5 0 37.5 37.50
43* 40 40 0 20 66.67
44 40 12.5 10 37.5 25.00
45 40 25 10 25 50.00
46 40 5 15 40 11.11
47 40 15 15 30 33.33
48 40 5 20 35 12.50
49 40 10 20 30 25.00
50 40 7.5 30 22.5 25.00
51 40 25 20 15 62.50
52 40 13 30 18 41.94
53 40 16.5 30 13.5 55.00
*Mixes were not made because it was determined that enough data was present on
formulations containing 0% AP.  These were fully evaluated theoretically.



Results:  Total Energy – RDX v Al
at varying levels of AP

Figure 2: Theoretical Total Energy of Detonation as RDX is 
exchanged for Al at varying AP levels and 40% DNANs
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Results:  Theoretical Velocity v
Theoretical Energy

Figure 4: Theoretical Velocity versus Theoretical Energy for 0% AP & 40% 
DNANs

( le f t  m o s t  Po int  o n e a c h is  s m a lle s t  wt % RDX o f  RDX &Al a nd inc re a s e s  f rom  t he re )
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Results:  Theoretical Velocity v
Theoretical Energy

Figure 5: Theoretical Velocity versus Theoretical Energy
(Left most Point on each is smallest wt% RDX of RDX &Al and increases from there)
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Figure 6: RDX (wt%) of RDX and Al vs. Experimental Dent Depth for 
varying AP concentrations
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Figure 7: RDX (wt%) of RDX and Al vs. Experimental Velocity for varying 
AP concentrations
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Table 6: Experimental Velocity and Dent Depth
Increases With
Increasing levels of RDX and Similar Levels of AP

Mix # RDX AP % velocity
increased

% dent depth
increased

44* 12.5 10
38
45

17
25

10
10

6.3
6.6

7.4
14

46* 5 15
39
47

11.5
15

15
15

9.2
11.2

8.8
26.3

49* 10 20
30 20 20 6.9 32.2
31 30 20 9.7 33.3

* Mix numbers following in the same color set are percent of these i.e. the velocity
of 38 is 6.3% greater than the velocity of 44



Figure 8: Average Velocity versus Dent Depth
(Left most Point on each is smallest wt% RDX of RDX &Al and increases from there)
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Figure 10: RDX (wt%) of RDX and Al vs. Experimental NOL Card Gap for 
varying AP concentrations
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Table 1. Average Peak Pressure

Average Peak Pressure (psi)
Explosive

Nominal
N.E.W. (lbs) 10’ 20’ 30’ 40’

Comp B 9.1 30.4 6.7 3.0 3.0

PAX-28 9.6 39.5 7.4 5.7 3.3

PAX-28 12.6 57.0 9.2 7.4 5.5

An equivalency factor of 1.62 was determined between
Composition B and PAX-28

NEW used for PAX-28 was based upon an anticipated requirement



Table 2. Factors for Equivalent Weight of Composition B

Explosive Equivalent Comp B
Factor

PBXN-109 1.19

Tritonal 1.09

AFX-777 1.47

AFX-757 1.39

PAX-28 1.62


