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Background

* Thevast mgjority of cannon lunched unitary warheads use melt pour
explosives for cost and surge capability

« Traditional melt pour explosives have focused on fragmentation
capability
— TNT
— Composition B
* A new family of low cost reduced sensitivity melt pour explosives

based on 2,4-dinitroanisole, RDX or HM X and AP has been developed
IN response to IM requirements

— PAX-21 - Composition B replacement (in production for 60mm mortar)
— PAX-24 - TNT replacement

— PAX-25 - Composition B replacement

— PAX-28 - Dual purpose



Technical Approach

o Start with proven DNANSAP system
— Add Al for blast effect
— Investigate levels of solids for performance/processibility
— Evaluate effect of RDX versus HM X

o Compareto typical existing formulations
— Composition B
— PBXN-109
e Formulate the most promising compositions and test

— Bench performance tests for fragmentation
— Blast tests



Results

A practical, dual purpose, melt pour
explosive has been devel oped (PAX-28)

Excellent blast characteristics

Excellent bench scale fragmentation
performance

Good IM performance




Future Work

 Validate expected fragmentation performance
— Pit testsin several fragmentation munitions
* Quantity and mass distribution of fragments

— Arenatests in target munitions based upon user
requirements

» Quantity, mass distribution, velocity and orientation of
fragments

e Perform system level demonstrations
e Perform IM testing



Results: Initial Mixes

Table 1: Formulations Evaluated by Mix Number

Mix # DNANs RDX AP Al RDX
or (Wt%)
HMX of
RDX&AI
HMX Containing
1 35 35 15 15
17 35 35 15 15
20 35 35 15 15
RDX Containing
30 40 20 20 20 50.00
31 40 30 20 10 75.00
32 40 30 15 15 66.67
33 40 50 0 10 83.33
34 40 30 0 30 50.00
35 40 10 0 50 16.67
36 40 0 0 60 0.00
37 40 27.5 0 32.5 45.83
38 40 17 10 33 34.00
39 40 11.5 15 33.5 25.56
40 40 6.4 20 33.6 16.00
41 40 0 30 30 0.00
42* 40 22.5 0 37.5 37.50
43* 40 40 0 20 66.67
44 40 12.5 10 37.5 25.00
45 40 25 10 25 50.00
46 40 5 15 40 11.11
47 40 15 15 30 33.33
48 40 5 20 35 12.50
49 40 10 20 30 25.00
50 40 7.5 30 22.5 25.00
51 40 25 20 15 62.50
52 40 13 30 18 41.94
53 40 16.5 30 13.5 55.00

*Mixes were not made because it was determined that enough data was present on
formulations containing 0% AP. These were fully evaluated theoretically.



Results: Total Energy — RDX v Al
at varying levels of AP

Figure 2: Theoretical Total Energy of Detonation as RDX is
exchanged for Al at varying AP levels and 40% DNANSs

ook A

0 20

40 60
RDX (wt%) of RDX and Al

80

20% AP

e ) = 10% AP
—X = 30% AP

= mp = 15% AP
e Base Line Energy




Results. Theoretical Velocity v
Theoretical Energy
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Figure 4: Theoretical Velocity versus Theoretical Energy for 0% AP & 40%

DNANSs

(left most Point on each is smallest wt% RDX of RDX &Al and increases from there)
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Results. Theoretical Velocity v
Theoretical Energy

Figure 5: Theoretical Velocity versus Theoretical Energy

(Left most Point on each is smallest wt% RDX of RDX &Al and increases from there)
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Results: Dent Depth

Figure 6: RDX (wt%) of RDX and Al vs. Experimental Dent Depth for

varying AP concentrations
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Results: RDX/Al Concentration

v Experimental Velocity

Figure 7: RDX (wt%) of RDX and Al vs. Experimental Velocity for varying
AP concentrations
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Results: Experimental Velocity

& Dent v RDX

Table 6. Experimental Velocity and Dent Depth
Increases With
Increasing levels of RDX and Similar Levelsof AP
: % velocity | % dent depth
BRI Al Increased Increased
44* 125 | 10
38 17 10 6.3 7.4
45 25 10 6.6 14
46* 5 15
39 115 15 | 9.2 8.8
47 15 15 | 11.2 26.3
49* 10 20
30 20 20 6.9 32.2
31 30 20 9.7 33.3
* Mix numbers following in the same color set are percent of thesei.e. the velocity
of 38is6.3% greater than the velocity of 44




Results: Average Velocity v
Dent Depth

(Left most Point on each is smallest wt% RDX of RDX &Al and increases from there)

Figure 8: Average Velocity versus Dent Depth
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Results: Card Gap

Figure 10: RDX (wt%) of RDX and Al vs. Experimental NOL Card Gap for

varying AP concentrations
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Results: The Bottom Line

Table 1. Average Peak Pressure

Nominal Average Peak Pressure (psi)
Explosive  N.E.W. (lbs) 10’ 20’ 30’ 40
Comp B 9.1 30.4 6.7 3.0 3.0
PAX-28 9.6 39.5 7.4 5.7 3.3
PAX-28 12.6 57.0 9.2 7.4 55

NEW used for PAX-28 was based upon an anticipated requirement

An equivalency factor of 1.62 was determined between
Composition B and PAX-28




Results: Blast Equivalence
Factors

Table 2. Factorsfor Equivalent Weight of Composition B

Explosive Equivalent Comp B
Factor
PBXN-109 1.19
Tritonal 1.09
AFX-777 1.47
AFX-757 1.39
PAX-28 1.62




