

Recommendations For Shaped Charge Jet, Munitions Test Procedure

Part 2 : Gun Propellant

Dr Frédéric PEUGEOT, March 2003

Introduction Influencing factors

Shaped Charge Jet	Propellant Ballistics Properties	Propellant Physical Properties	Propellant Shock Sensitivity	Propellant Configuration	
Velocity Diameter Composition	Properties Impetus Burn rate Ignition Temperature	Composition Particle sizes Bed loading density % TMD (voidage) Homogeneity Glass transition temp. Binder/Filler interaction	CJ parameters Hugoniot Critical energy Critical Diameter	Shape Perforations (number, size,) Web Size Outer diameter Mass Confinement	X
GB 19T -	120mm	Bp - 120.mm		Cool	2

Shortcomings Scaling effects

Resolving Shortcomings Scaling effects

The response is driven by the bed properties

The response is driven by the grains properties

Reaction Mechanisms (1/2) Macroscale

AREA 1 Jet tip / Grains interaction

Mechanism:

Shock Detonation Transition

AREA 2 Grains / Grains interaction

Mechanism: ?

Area 1 Protocol Interaction Jet-Grain(s)

Area 1 Protocol Interaction Jet-Grain(s)

Grains critical dimensions ?

YES

Shortcomings Critical diameters

Formulation

Grains

What is the influence of a perforation or several perforations on the critical diameter?

	Formulation	Formulation Critical Diameter (mm)	Slotted Tube Critical Web (mm)	Slotted Tube Critical Outer Diameter (mm)
	А	2.9-4.1	1.7-2.0 <mark>-40/50%</mark>	4.5-5.3 <mark>+30/55%</mark>
	В	3.8-4.7	2.5-3.2	8.3-10.7
	С	2.7-3.8	2.1-2.5	7-8.3

But, Debenham obtained a high order response even with a web lower than the critical web....

Reaction Mechanisms (2/2) Area 2 - Macroscale

Layers

X rays

WATSON (1992)

Sympathetic detonation

ZIMMERMANN

(1996)

PEUGEOT (1996)

NIMIC Sy pilot MSIAC

Sympathetic Detonation Area 2 - Mesoscale Mechanisms

Conclusions Testing Recommendations

Test conditions

No jet particulation No inverted gradient effect No spall Longest credible path

Test configuration

Represent the life cycle configuration

Test instrumentation

Threat & Reaction level

Stand off

X-Ray

Min attenuator thickness

Stripper plate

Representative casing Representative shielding Representative dimensions Sufficient amount of prop. No additional Confinement

Witness plate

Conclusions The best LOVA propellant

- The lowest Hugoniot
- The highest pressure dependent critical energy curve
- ✓ The highest critical diameter

Gun propellant vulnerability to SCJI is driven by 2 mechanisms: - the sensitivity to shock of the gun propellant - the mechanical behavior of the gun propellant

- Dimensional characteristics that reduce the risk of Sympathetic Detonation
- The best mechanical properties (XDT issues)

 The lowest bed loading density (opposite to ballistics properties) not to favour SD

Any Questions? f.peugeot@hq.nato.int

