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Why TATB Synthesis?

• Current production method produces
undesirable waste

• TCB is no longer readily available

• Presence of ammonium chloride is a
concern in TATB from traditional process
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New TATB Synthesis objectives

• Develop a viable sustainable route to
TATB
• Reasonable cost
• Acceptable waste streams
• TATB meets current specifications
• Scaleable
• Avoids chlorides
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Possible TATB routes

• Need to cleanly have 1,3,5 nitration
• Mild conditions
• High yield
• Acceptable waste
• Intermediate that can be undergo aminolysis/amination

• Aminolysis/amination should be simple
• High yield
• Mild conditions
• Available aminating agent
• Acceptable waste
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Phloroglucinol Route

• Phloroglucinol is ubiquitous
• In bark of fruit trees as glycoside derivative
• Free form in the acacia tree and the kino gum of the eucalyptus tree
• Worldwide, approximately 140-200 metric tons of phloroglucinol are

produced each year
• Numerous synthetic industrial routes (including demil of TNT)

• Route developed by Bellamy, Golding and Ward
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Phloroglucinol route assessment

• What is the best route and optimum conditions?
• Is route scaleable?

• Safety
• Processing
• Product quality
• Reproducibility
• Waste
• Cost (Materials, labour and waste disposal at

production scale)
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Synthesis of TNPG

• Acetylation hard to scale
• Lower yield as scale increased

• Extra step over nitrosation

• Higher temperatures
• Easy to scale

• Higher yields at bigger scales

• Moderate yield
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Reaction Calorimetry Data

• Reasonable exotherms
• Addition rate controls

heat evolution
• Easily controllable in

1700l reactor
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Synthesis of TETNB

• Used triethylorthoformate due to cost
• Maximized reaction concentrations
• Increased isolated yield
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Reaction Calorimetry Data
for Alkylation

• Not exothermic
reaction

• Very exothermic
crystallization
• Needs to be

controlled for viable
scale-up
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Safety Data of Intermediates

• No special hazards
• TNPG is very acidic

  TNPG TETNB Acceptable
limits

ABL impact (cm) 13 51 =3.5

ABL friction (lbs @ ft/s) 800 @ 8 800 @ 8 =50 @ 3

DSC onset/peak (°C) 219/223 307/318 --

VTS, 100°C, 48 h (ml gas/g substrate) 0.189 0.450 <2.0

TC ESD unconfined (J) 8, no mass ignition 0.6, no mass ignition no mass
ignition

TC impact (in) 27.7 45 >4

TC friction (lbs) >64 >64 >10

SBAT onset (°F) 297 391 >225

Russian deflagration-to-detonation (500 psi) GO NO GO NO GO

IHE mini-card gap (zero cards) GO NO GO NO GO
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Aminolysis Results

• Bubbled ammonia into reaction solution
• Simple and reproducible

solvent system†
particle size-micron

(10%,50%,90%) temperature(ºC) yield

MeOH 1.9, 5.5, 11.4 -5 97.8

EtOH 3.9, 8.2, 13.8 -5 98

DMF 1.8, 8.8, 20.0 -5 99.1

EtOH/DMSO (2/1) 4.5, 9.6, 15.8 0 99.4

i-PrOH 4.7, 15.6, 28.8 -5 99.1

dimethoxydiethylether 6.1, 12.0, 19.8 -5 97.5

acetonitrile 4.1, 14.6, 35.9 -5 97.8

pyridine 4.9, 13.7, 25.1 -7 99

dichloromethane 8.8, 22.9, 45.4 -5 99.8

toluene 16.6, 30.4, 53.0 -5 95.3
Navy TATB (included for
comparison) 26.0, 62.6, 114.5 -- --
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TATB Analysis
• Analysis (purity) is difficult due to TATB

insolubility
• Quantitative HPLC method developed but needs

standard   ATK Thiokol
TATB

Navy TATB Acceptable limits

ABL impact (cm) 80 80 =3.5

ABL friction (lbs @ ft/s) 800 @ 8 800 @ 8 =50 @ 3

DSC onset/peak (°C) 367/370 385/389 --

VTS, 100°C, 48 h (ml gas/g substrate) 0.252 0.166 <2

TC ESD unconfined (J) 0.8, no mass
ignition

2.66, no
mass

ignition

no mass
ignition (at 8

J)
TC impact (in) >46 >46 >4

TC friction (lbs) >64 >64 >10

SBAT onset (°F) N/A (off scale) N/A (off
scale)

>225

Russian deflagration-to-detonation
(500 psi)

NO GO -- NO GO

IHE mini-card gap (zero cards) NO GO -- NO GO
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TATB Processing
• Made moulding powder
• Processed and safety properties as standard

TATB
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Conclusions
• Synthesis of TATB from phloroglucinol as described

by Bellamy et al has been found to be reproducible
and scaleable

• Each step has been run under different conditions
multiple times at the 500g to 1kg scale and high purity
material obtained

• Reagents are all readily available and of reasonable
cost

• Significant reaction optimization has been completed
• There appear to be few reaction scale issues that

would prevent this chemistry from being further scaled
up


