The development of an alternative route to triaminotrinitrobenzene

J. Hanks, T. Highsmith, A. Sanderson, and S. Velarde

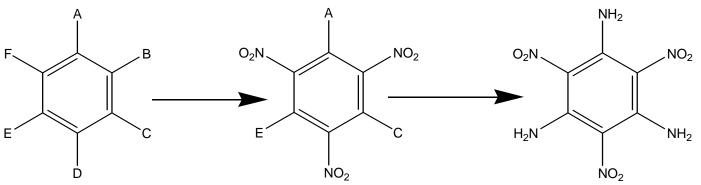
Acknowledgements

- The funding for this work was provided to Thiokol by the US Navy ManTech office
- Special thanks to Rob Schmitt, Alex Mitchell, Al Stern, Lori Nock, John Brough, Tim Mahony and Mike Coburn in US
- Anthony Bellamy, RMCS and Peter Golding, AWE

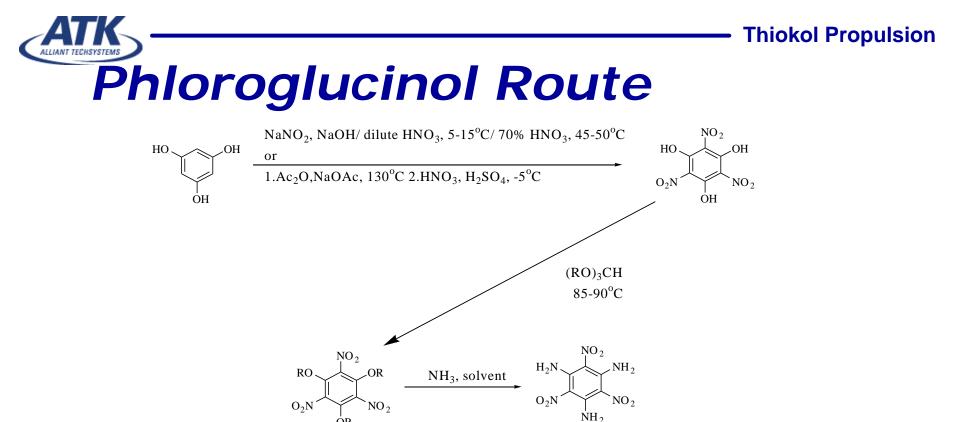
Thiokol Propulsion

Why TATB Synthesis?

- Current production method produces undesirable waste
- TCB is no longer readily available
- Presence of ammonium chloride is a concern in TATB from traditional process



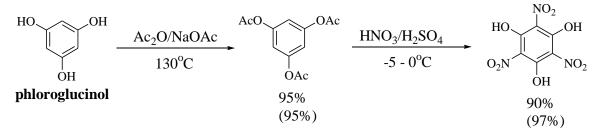
New TATB Synthesis objectives


- Develop a viable sustainable route to TATB
 - Reasonable cost
 - Acceptable waste streams
 - TATB meets current specifications
 - Scaleable
 - Avoids chlorides

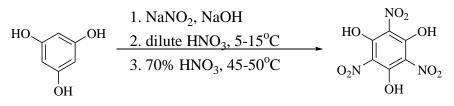
Possible TATB routes

- Need to cleanly have 1,3,5 nitration
 - Mild conditions
 - High yield
 - Acceptable waste
 - Intermediate that can be undergo aminolysis/amination
- Aminolysis/amination should be simple
 - High yield
 - Mild conditions
 - Available aminating agent
 - Acceptable waste

- Phloroglucinol is ubiquitous
 - In bark of fruit trees as glycoside derivative
 - Free form in the acacia tree and the kino gum of the eucalyptus tree
 - Worldwide, approximately 140-200 metric tons of phloroglucinol are produced each year
 - Numerous synthetic industrial routes (including demil of TNT)
- Route developed by Bellamy, Golding and Ward



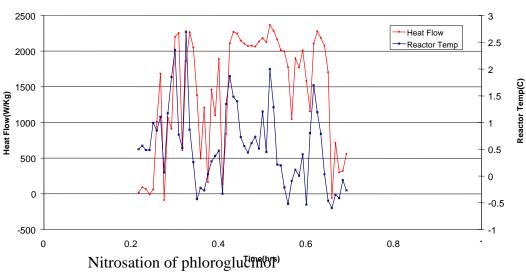
Phloroglucinol route assessment


- What is the best route and optimum conditions?
- Is route scaleable?
 - Safety
 - Processing
 - Product quality
 - Reproducibility
 - Waste
 - Cost (Materials, labour and waste disposal at production scale)

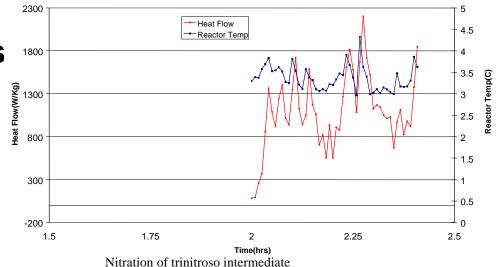
Synthesis of TNPG

- Acetylation hard to scale
 - Lower yield as scale increased
- Extra step over nitrosation

- Higher temperatures
 - 1162

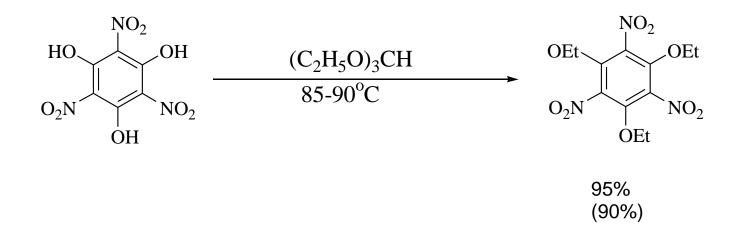

75% (70%)

- Easy to scale
 - Higher yields at bigger scales
- Moderate yield



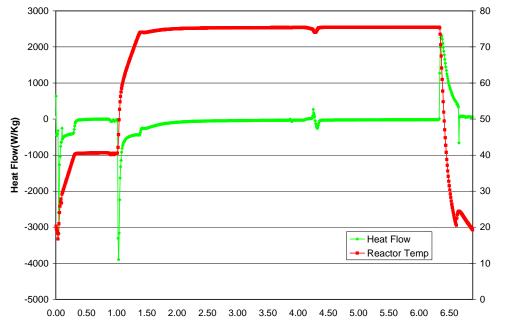
Thiokol Propulsion

Reaction Calorimetry Data


- Reasonable exotherms
- Addition rate controls
 heat evolution
- Easily controllable in 1700l reactor

Synthesis of TETNB

- Used triethylorthoformate due to cost
- Maximized reaction concentrations
- Increased isolated yield



Thiokol Propulsion

Reaction Calorimetry Data for Alkylation

- Not exothermic reaction
- Very exothermic crystallization
 - Needs to be controlled for viable scale-up

Time(hrs)

Safety Data of Intermediates

- No special hazards
- TNPG is very acidic

	<u>TNPG</u>	TETNB	Acceptable limits
ABL impact (cm)	13	51	=3.5
ABL friction (lbs @ ft/s)	800 @ 8	800 @ 8	=50 @ 3
DSC onset/peak (°C)	219/223	307/318	
VTS, 100°C, 48 h (ml gas/g substrate)	0.189	0.450	<2.0
TC ESD unconfined (J)	8, no mass ignition	0.6, no mass ignition	no mass ignition
TC impact (in)	27.7	45	>4
TC friction (lbs)	>64	>64	>10
SBAT onset (°F)	297	391	>225
Russian deflagration-to-detonation (500 psi)	GO	NO GO	NO GO
IHE mini-card gap (zero cards)	GO	NO GO	NO GO

Aminolysis Results

solvent system [†]	particle size-micron (10%,50%,90%)	temperature(°C)	yield
MeOH	1.9, 5.5, 11.4	-5	97.8
EtOH	3.9, 8.2, 13.8	-5	98
DMF	1.8, 8.8, 20.0	-5	99.1
EtOH/DMSO (2/1)	4.5, 9.6, 15.8	0	99.4
i-PrOH	4.7, 15.6, 28.8	-5	99.1
dimethoxydiethylether	6.1, 12.0, 19.8	-5	97.5
acetonitrile	4.1, 14.6, 35.9	-5	97.8
pyridine	4.9, 13.7, 25.1	-7	99
dichloromethane	8.8, 22.9, 45.4	-5	99.8
toluene Navy TATB (included for	16.6, 30.4, 53.0	-5	95.3
comparison)	26.0, 62.6, 114.5		

- Bubbled ammonia into reaction solution
- Simple and reproducible

TATB Analysis

- Analysis (purity) is difficult due to TATB insolubility
- Quantitative HPLC method developed but needs
 standard
 <u>ATK Thiokol</u> <u>Navy TATB</u> <u>Accepta</u>

	ATK Thiokol	<u>Navy TATB</u>	Acceptable limits
	TATB		
ABL impact (cm)	80	80	=3.5
ABL friction (lbs @ ft/s)	800 @ 8	800 @ 8	=50 @ 3
DSC onset/peak (°C)	367/370	385/389	
VTS, 100°C, 48 h (ml gas/g substrate)	0.252	0.166	<2
TC ESD unconfined (J)	0.8, no mass ignition	2.66, no mass ignition	no mass ignition (at 8 J)
TC impact (in)	>46	>46	>4
TC friction (lbs)	>64	>64	>10
SBAT onset (°F)	N/A (off scale)	N/A (off scale)	>225
Russian deflagration-to-detonation (500 psi)	NO GO		NO GO
IHE mini-card gap (zero cards)	NO GO		NO GO

TATB Processing

- Made moulding powder
- Processed and safety properties as standard TATB

Conclusions

- Synthesis of TATB from phloroglucinol as described by Bellamy et al has been found to be reproducible and scaleable
- Each step has been run under different conditions multiple times at the 500g to 1kg scale and high purity material obtained
- Reagents are all readily available and of reasonable cost
- Significant reaction optimization has been completed
- There appear to be few reaction scale issues that would prevent this chemistry from being further scaled up