Network Centric Logistics Managing Logistics in Dynamic Operations

> Greg Burton Director, Advanced Support Concepts Boeing Phantom Works (314) 232 – 8697 robert.g.burton@boeing.com

- How has the mission changed?
- What do we need to succeed?
- How does logistics fit into Network Centric Operations?
- What is Boeing doing related to Network Centric Operations?
- How do we integrate logistics into Network Centric Operations?
- Where is Boeing investing to implement Network Centric Logistics?

How has the Mission Changed?

- Dynamic and Not Well Defined
 - Constantly Moving, Possibly 100s of Miles
 - Hostile Environment
 - Terrain
 - Weather
 - Enemy Actions
- Logistics Needs Also Dynamic
 - Attrition
 - Variable Rate of Expenditure
 - Unplanned Maintenance Actions
- Initially Lacking Infrastructure to Execute
 - Need for Rapid Deployment
 - Affordability and Availability Issues

Keys to Success

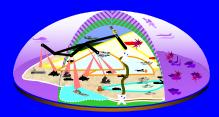
- Situational Awareness / Understanding
- Timely and Effective Decision Making
- Timely and Effective Decision Execution

Network Centric Logistics - A Critical Link in Network Centric Operations

Boeing Investment in Network Centric Logistics

- Network Centric Operations
 - Common Open Architecture Standards
 - Future Combat Systems
 - Integrated Decision and Execution Network
 - IRAD Thrust Investment
 - Log Net
- Integrated Vehicle Health Management
- Supporting the Legacy Force
 - Mechanics Compass
 - Remote Service Center
 - Support Modeling and Simulation

Network Centric Operations


Network Centric Warfare

Three functional networks are required to prosecute any conflict

The Kill Net contains all the elements

required to effectively employ combat

power

Kill Net

Log Net

. The Legistice Net includes the global

• The Logistics Net includes the global logistics and sustainment elements in support of the Kill Net

Enabled by:

- Seamless wideband
 - communications
- Integrated data systems
- Joint command and control

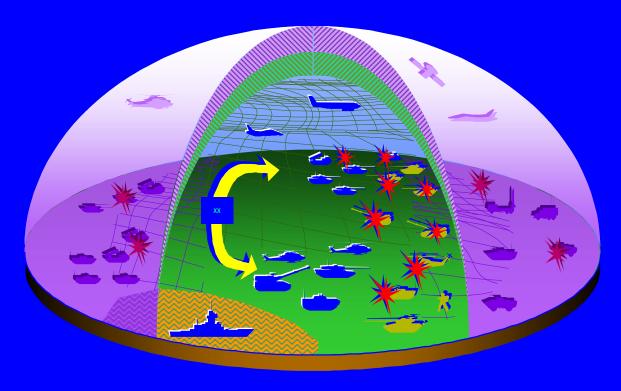
Planning Net

• The Planning Net provides all strategic to campaign level planning functions to include worldwide data base access and fusion

> We are initiating the technical architecture work and demonstrating its value

Comparing Two Approaches:

Targeting the Means

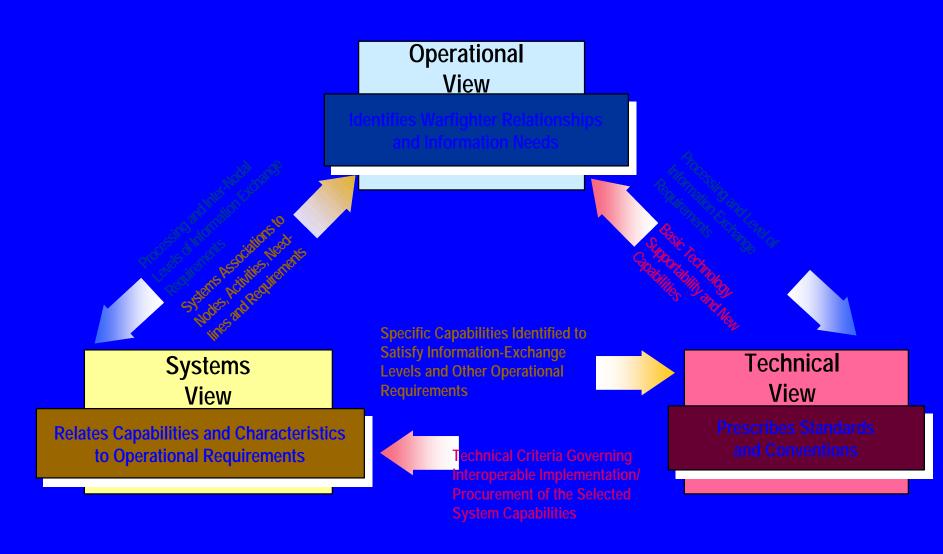

- Attrition-based
 - Focus on "Targets"
 - Military Objectives
 - Quantifiable Results
- Indirect attack on will
- War/Combat only
- Deterrence
 - Threat of Preemption
 - Threat of Retaliation

Targeting Will/ Behavior

- Effects-based
 - Focus on "Actions"
 - Political Objectives
 - Non-linear Results
- Direct attack on will
- Peace, Crisis, War
- Deterrence
 - Threat of unacceptable consequences

How do we use effects-based approach?

The Joint Battlespace Infosphere Is Our Information Management System



- Worldwide information source access
- Shared and managed information
- Improved data validity
- Controlled access to sensitive information
- Tools and services for info manipulation
- Tailored information to each user
- Common ontology, formats, and information structures
- Reduced duplication of information

Affordable Data Structures That Use Available Worldwide Databases and Information Fusion In Near Real Time

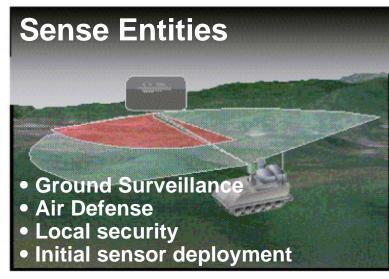
Joint Technical Architecture Framework

10

Future Combat Systems

roved for Public Release, Distribution Unlimited

6

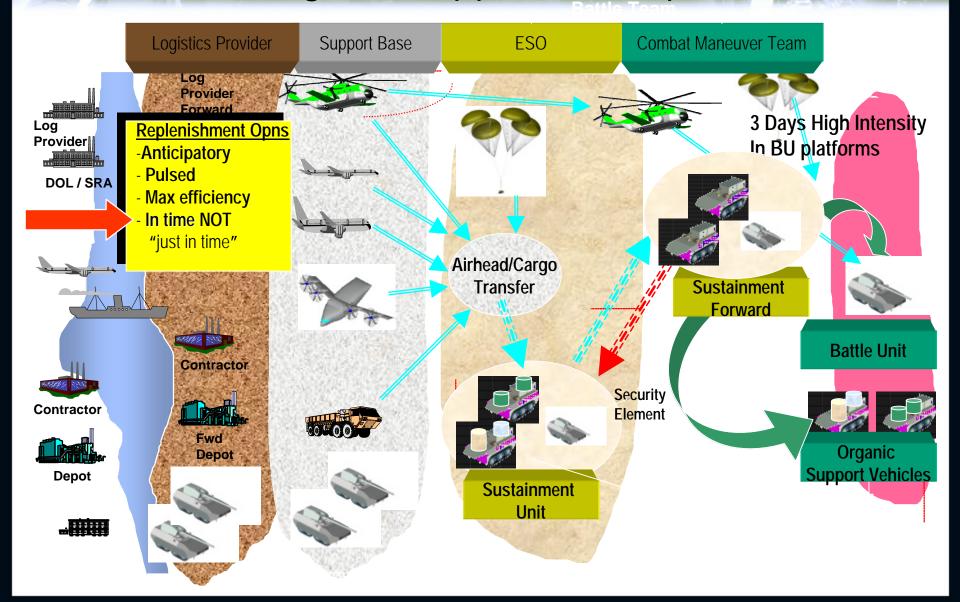

Future Combat Systems Sensor Tasks by Domain

Maneuver (partially in Combat Systems)

- Navigate
- Mine detection
- Mobility

Terrain features

Measure atmospheric conditions

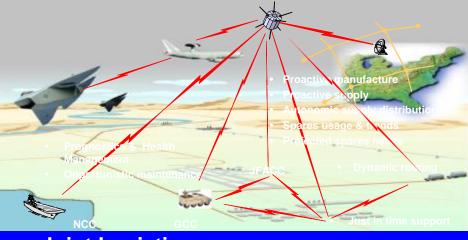


Logistics networked in every domain

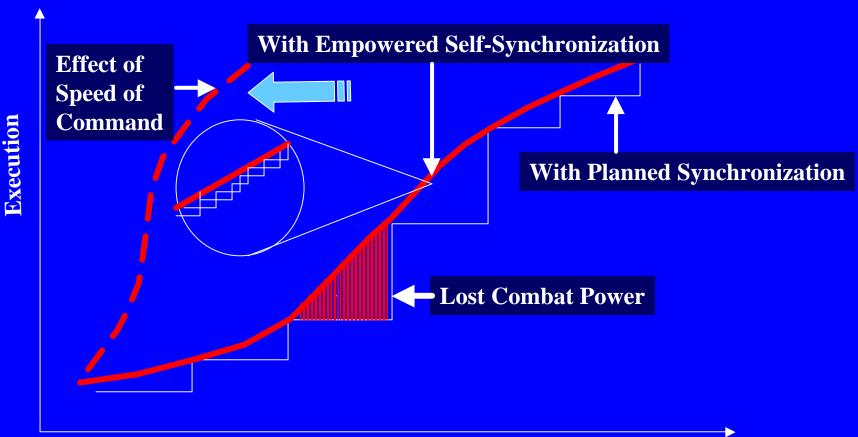
Future Combat Systems Logistic Support Concept

Log Net

Joint Battlespace Infosphere



Global Communications


Log Net is the result of the total integration of logistics C2, communications and information

Joint Logistics Capability

What does "Network Centric" Buy Us?

Time

New Sciences and Warfare VADM A.K. Cebrowski 9/21/98

Integrated Decision and Execution Network

- Derived from initial effort to structure an architecture for Integrated Air and Missile Defense (IAMD)
- Initial simulation results show
 - Increased robustness and an average of up to 50% more kills in a cruise missile defense scenarios with legacy forces
 - 70% increase in kills in a land combat scenario with legacy forces
 - Order of magnitude increase in effectiveness for new forces designed for this approach

Integrated Vehicle Health Management

IVHM Maturity Levels

• Informed Maintenance – Ability to perform maintenance based on component / subsystem condition and operational requirements, to automate flight certification, and to monitor and manage / schedule maintenance resources.

 Level 5 Prognostics – Can you predict component/subsystem failure and perform maintenance on condition or demand? Integration with controls?

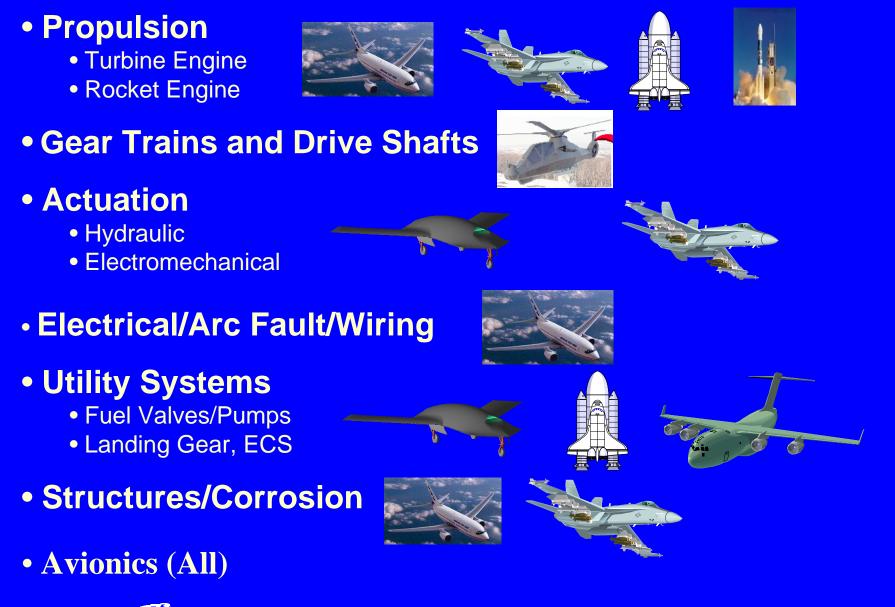
• Level 4 Advanced Diagnostics – Can tell a component is degrading prior to failure? Are anomalies, intermittents, single event upsets detected, data captured, correlated to operational context? Minimal CNDs?

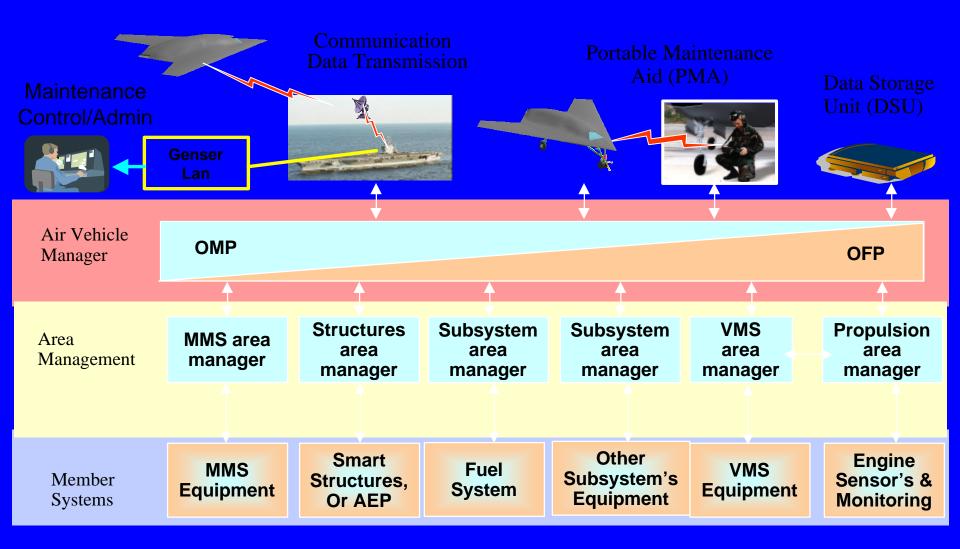
• Level 3 Integrated System Architecture – Does the system hardware and software architecture provide the data and resources for IVHM given the operational, support and safety requirements? Can you easily update the IVHM system? Does a closed loop process support maturation?

• Level 2 Integrated Diagnostics – Can the root cause of a failure be traced across subsystems? Are diagnostic analysis and design an integral part of the system engineering process? Data and analysis models shared/reused?

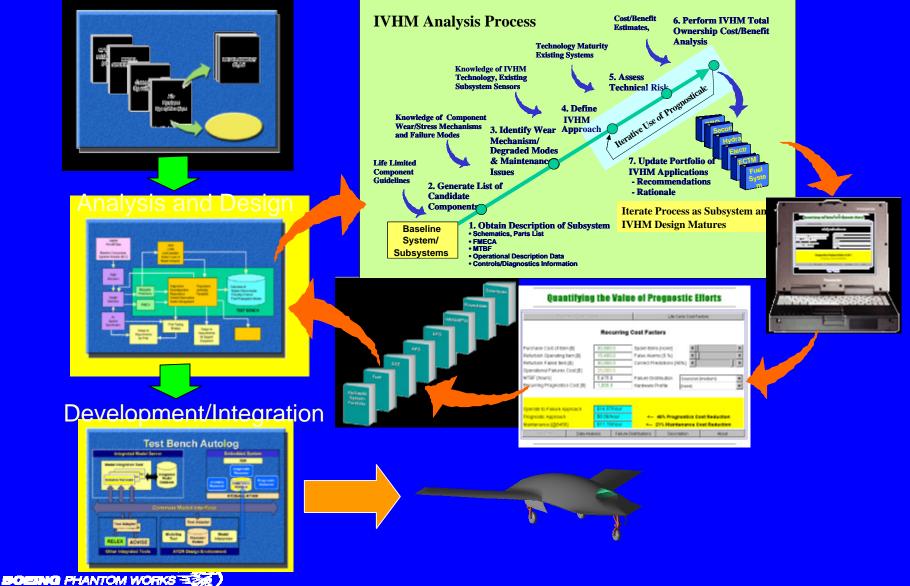
• Level 1 Built In Test (BIT) – Is faulty vs acceptable performance based on a defined discrete threshold?

PHM


- False alarm reduction (this is our prime thrust a must for autonomic logistics)
 - Alert/confirm whenever practical
 - Confirm suspected faults with independent observations
 - "Real-timely" fault confirmation
 - Confirm the fault shortly after it is suspected . . . while conditions are similar
 - Resolve multiple consequences of a single fault (done on 777)
 - One fault = one maintenance action
- pHM for most systems is "little p, big HM"
 - *Emphasize Health Management* to ensure that graceful degradation and reconfiguration inherent to the design *achieve Opportunistic Maintenance*
 - Prognostics enhances safety
 - Apply structured process using PrognostiCalc to develop cost effective prognostics
 - Operational Maintenance Program (OMP) isolates
 PHM changes from OFP


On Condition / Opportunistic Maintenance Maximizes SGR While Minimizing Maintenance Costs

Application Focus Areas


Generic IVHM Functional Hierarchy

IVHM Begins with Sound Requirements

Requiremente

Prognosticalc Tool

PC Web Based			Quantifying the Value of Prognostic Efforts						
Tool wr	Recur	ring Cost Factors		Life Cycle Cost Factors					
		Life Cycle Cost Factors							
Quantifyin	g the Val	ue of Pro	ognostic E	fforts	[. [500,000.0 1 6000			
Recurring Cost Factors			Life Cycle Cost Factors			1.8 1000			
	Recurrin	g Cost Facto	ors			ack Ratio of 23:1			
Purchase Cost of Item [\$]	30,800.0	Spare Items	[none]			res \$36160000]			
Refurbish Operating Item [\$]	15,400.0	False Alarm	s [5.%]			tributions Description About			
Refurbish Failed Item [\$]	30,800.0	Correct Pred	dictions [90%] 🔳	4		anodaons Description About			
Operational Failures Cost [\$]	25,000.0					Previous			
MTBF [hours]	5,675.0	Failure Distr	ribution Gaussian	[medium]	•				
Recurring Prognostics Cost [\$]	1,000.0	Hardware Pr	rofile [none]		-				
Operate to Failure Approach	\$14.97/hour								
Prognostic Approach \$8.86/hour		< 4	10% Prognostics C	ost Reduction					
Maintenance [@5458]	Naintenance [@5458] \$11.75/hour < 21			ost Reduction		Sexectivities the System of Prop			
Data Entry Data Ar	alysis Failu	re Distributions	Description	About					

Prognosticost – Extended Prognosticalc And Integrated Diagnostic Analysis

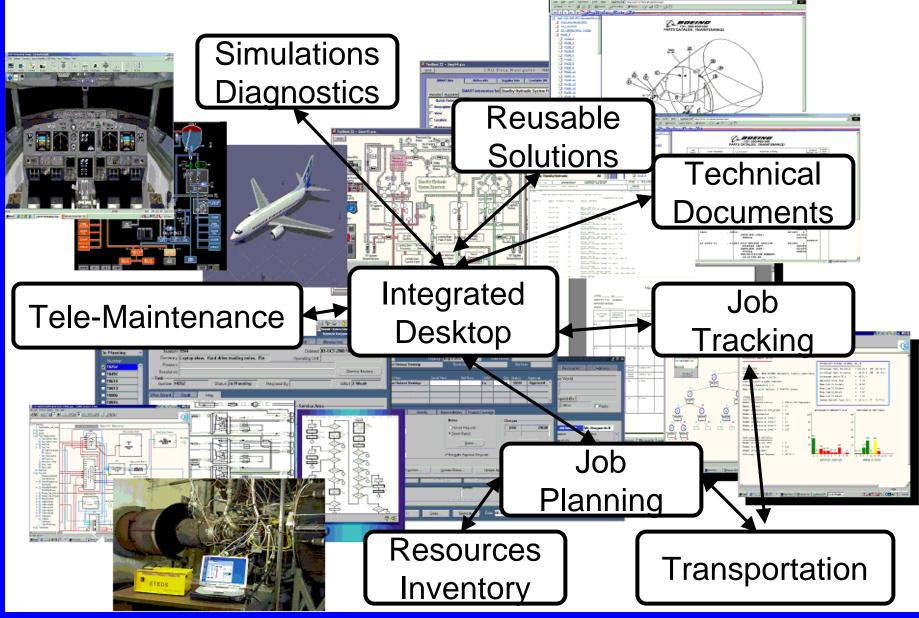
							-	
tudy Title:								
TA:								
nalayst Name:								
AIRPLANE / SYSTEM / E	CONOMIC FACTORS D	ETAILED INPUT SECTIO	DN .	1				
IRPLANE LEVEL INPUTS		UNITS		EALTERNATE	SOUR	CE(S) FOR BASELINE	SOURCE(S) FOR ALTE	RNATE
Airplane Program			í –					
Airplane Fleet Size	PrognostiCost Version B	eta 1.2 Feb 27, 2002 - (Cost Ru I F	211 Outputs				
. Average Number of Flights per Ye			JUSC DY LI	io outputs				
. Average Flight Hours per Flight	Study Title: Trade	•	1					
. Average Delay Cost per Delay Ho	Analyst Name: Rh	odes, Stephen C.						
Average Cancellation Cost per C	BASELINE			LRU 1		LRU 2	LRU 3	Totals
. Average Air Turnback Cost per T	Part Description				r	Valve	Actuator	
. Average Diversion Cost per Diver	Maintenance Approac	n				Scheduled	1 8	
. Out of Service Cost per Day		fe Cvcle Cost NPV - 20 Ye	ars	Operate To Fa	ailure	MTBO= 6000	Operate To Failure	1.8
). Lbs Fuel Burned / Flight Hour / Lb	Fuel	10 Oycle 0031141 V - 20 10	/di 5	¢.	106,634	\$120,582	\$120,582	\$347,798
	Line Maintenance				\$22,848	\$57,847	\$39.573	\$119,467
YSTEM LEVEL INPUTS	Planned Maintenan		\$12,567	\$37,847 \$0	\$12,567	\$25,134		
. System Name	Shop Maintenance		\$12,567 393,937	\$1,873,681	\$196,166	\$2,457,804		
Year of Delivery of the System	· · · · · · · · · · · · · · · · · · ·		432,553	\$252,971	\$68,827	\$1,794,351		
3. System Acquisition Cost, Base Y	Scheduled Interruption				+32,553 036,691	\$755,920	\$215,977	\$1,794,351
Increase in System Acquisition Co	Spares			φι,ι	130,091 \$0	\$0	we k	
5 System Support Equipment Cost,	Expendable Material				\$U	Sh N	\$0	\$0 \$0
 System Initial Training Cost, Base Length of System Life in Years (1-2) 	Recurring Prognostics			the second			4017710	0¢
Length or System Lire in Teals (1-2	Total				005,230	\$3,100,201	\$647,712	\$6,753,143
CONOMIC FACTORS (REQU	[$\nabla \mathcal{D} = \mathcal{D}$		
3 Average Fuel Inflation Rate Beyon	ALTERNATE	ALTERNATE			17	KRU 2	LRU 3	Totals
Average Non-fuel Inflation Rate E	Part Description	17	_	Compute	r 💙	Valve	Actuator	
0 Insurance Factor (Normally Zeroe 1 Minimum Attractive Bate of Betu	Maintenance Approac		u Ca	Operate To Fa	silure	Prognostics	Prognostics	
2 Spares Holding Factor		fe Cycle Cost NPV - 20 Ye	ans	1 1		_		
3 Maintenance Labor Burden Facto	Fuel				106,634	\$125,231	\$120,582	\$352,447
4 Direct Labor Rate per Hour	Line Maintenance				\$19,054	\$67,616	\$27,724	\$114,394
5 Fuel Cost per Gallon, Base Year	Planned Maintenan	7.7		\$12,567	\$12,567	\$2,922	\$28,056	
BOEINC PrognostiCo	Shop Maintenance	<u></u>			301,753	\$1,938,204	\$165,370	\$2,405,328
	Scheduled Interrupt				159,318		\$114,882	\$539,201
	Spares			\$1	309,915	\$950,300	\$174,942	\$1,935,156
	Expendable Materia				\$0	\$0	\$0	\$0
	Recurring Prognost	ics V						\$0
	Total			¢.4	409,241	\$3,378,249	\$616.086	\$5,403,576

BOEING PHANTOM WORKS

Supporting Legacy Systems

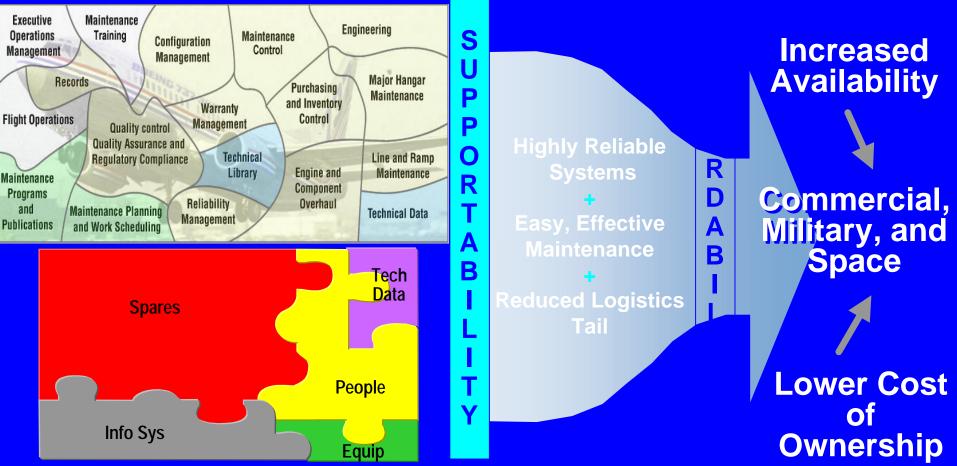
Description of Ground Diagnostic System (Mechanic's Compass)

A Boeing Commercial maintenance decision-support tool that

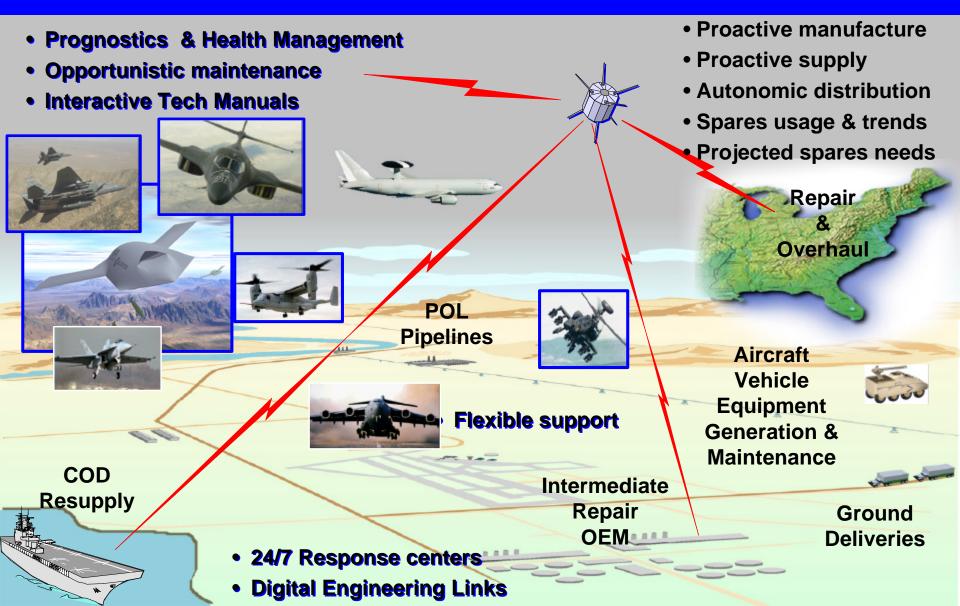

- Uses a probabilistic Bayesian network diagnostic engine

(AMM, FIM)

 Integrates engineering system-design knowledge and mechanic cause-andeffect knowledge with component reliability data


Features Mechanic's Compass - Other Functions Schematic Crew Report New Tail # Exit Links causes to system schematics MEL / Time / Parts Summary Log Change Subsystem Summarizes diagnostic session Flight stages is climb Click on item to Ressure Indicator is zero change state COLUMN 232-300 Summarizes known observations Bleed Air Trip Off Light is on Reset Prioritizes most probable causes 2) Possible Causes- ATA 3 Pre-cooler control valv Top 5 🔻 MECHANIC'S Recommends subsequent tests actions to stage valve Pre-cooler Probability = 40.00% disambiguate causes, based on: Bleed Air Reg. Overpress switch COMPASS 390 deg sensor Details. Test information content 3)Tests- ATA 36: Pneumatic Diagnostics at your Fingertips Top 5 🔻 Precooler Valve Position Indicator Test Cost to perform test igh Stage Valve Position Indicator Test Double-Bleed Air Trip Off Light Reset Test Click Test Time to perform test PRSOV Position Indicator Test to Specify Bleed Air Reg. Control Sense Line Leakin Fest Resul Weights. Details. Links to Portable Maintenance Aid in context

Remote Service Center Architecture



History The Support MS&A Goal

Capability to measure and prioritize technologies and initiatives across the Support spectrum

Support Modeling Environment Support Concept Strategy

Making it Work

- Government Industry Partnering
 - Tailoring Commercial Architectures
 - Open Systems Design
 - Non-traditional Business Models
- Logistics
 - Incorporated into the Overall System Design
 - Flexible, Using the Pipeline as the Staging Area
 - Enabled by Information and Processes

