

Transitioning Science & Technology Programs

Technology Readiness Assessments and the Revised DoD Acquisition Series

Mr. Al Shaffer Director, Plans and Programs Office of the Director, Defense Research and Engineering 5 March 2003

Director, Defense Research & Engineering Priorities

- Focus & Integrate DoD S&T on "Transformation"
- Enhance Technology Transition
- Address National Security S&E Workforce
- Expand Outreach to Combatant Commands and Intelligence Community
- Accelerate Support to the War on Terrorism

DDR&E Priorities Expanded

- Enhance Technology Transition Efforts
 - Enhanced Primary Transition Efforts under DUSD (Advanced Systems and Concepts); Mrs. Sue Payton
 - Increase Investment in Technology Transition Efforts (Quick Reaction Special Projects and Advanced Concept Technology Demonstrations)
 - Expanded Use of Technology Readiness
 Assessments as Part of Defense Acquisition Board
 Major Program Reviews

Under Secretary AT&L Goals*

- Theme: Accelerate Acquisition & Tech Transition Efforts
 - Revitalize Defense Acquisition Board at Senior Level
 - Mandate Evolutionary, Spiral Development
 - Implement Technology Readiness Assessments
 - Mandate the Goal of S&T at 3%
 - Exploite the Enormous Potential of ACTDs
 - Accelerate the Flow of Technology to the Warfighter

Speeding Technology Transition "The Challenge"

Some Tech Transition Dimensions

- Rate of Technology Change Increasing
- Capabilities-based Planning Changes Requirements/Needs Process
- Acquisition Excellence/Spiral Insertion
- Availability of Commercial Technology
- Demos (Try Before Buy)

Multiple Dimensions Mean Multiple Solutions Needed

The Challenge: Pace of Technology

- "Moore's Law" Computing doubles every 18 months
- "Fiber Law" Communication capacity doubles every 9 months

Defense Acquisition Pace

F-22	Milestone I:	Oct 86	IOC:	Dec 05*
Commanche	Milestone I:	Jun 89	IOC:	Sep 09

* Computers at IOC are 512 X faster, hold 65,000 X bits of information than they did at MS I

Technology growth is non-linear... Acquisition path has been linear

Technology and Defense Acquisition

DoD 5000-Series: S&T Role in Evolutionary Acquisition As of April 2002

- DoDD 5000.1, The Defense Acquisition System
 - Rapid & Effective Transition From S&T to Products
 - Emphasis on Cost & Affordability in Program Development

• DoDD 5000.2, Operation of the Defense Acq. System

- Identify S&T Solutions in Pre-Systems Acquisition
- Reduce Technology Risks Before the Acquisition Process
- Use Mechanisms with User & Acq. Customer to Ensure Transition
 - > ATDs, ACTDs, Service & Joint Experiments
- DoD 5000.2-R, Procedures for Acquisition Programs
 - Establish Technology Readiness Levels (TRLs) for Critical Technologies

Documents Available at http://www.acq.osd.mil/ara/

Changes to Defense Acquisition Regulation

Why? "To create an acquisition policy environment that fosters efficiency, flexibility, creativity, and innovation"

Additional DepSecDef Guidance 30 Oct 2002

- DepSecDef Issued Interim Guidance (~40 Pages):
 - Reaffirmed the Importance of Technology Transition
 - Reaffirmed Evolutionary Acquisition
 - Reaffirmed Technology Development as a Continual Process
 - Directed Continuation of Technology Readiness Assessments and Independent Technology Assessments (Milestones B/C)

DEPSECDF Intent: Streamline Acquisition, with increased flexibility for technology insertion

Changes to Requirements Process

- Warfighter "owns" the Requirements Process
- Moving to Top-Down "Joint Capabilities Integration"
- Key Documents:
 - Joint Integrating Architecture (JIA) (Pre MS-A)
 - Initial Capabilities Document (ICD) (Pre MS-A)
 - Capability Development Document (CDD) (MS-B)
 - Capability Production Document (CPD) (MS-C)
 - Capstone Requirement Document (CRD)

Possible Future Requirements / Acquisition Process

Initial Requirements Process

Best Practices

All Services are evolving their acquisition processes

Navy Science & Technology (S&T) Problem / Solution

Programs below critical mass were never ready for transition

Navy FNC IPT Approach

- Industry Board of Directors Model
- Principal Members:
 - Chair -- Requirements community -- Office of Chief of Naval Operations (OPNAV)/Marine Corp Combat Development Center (MCCDC)/Fleet/Force rep.
 - Transition Lead -- Acquisition community -- Systems Command (SYSCOM)/Program Executive Officer (PEO) rep.
 - Execution Manager/Technical Working Group Leader -- S&T community rep.
 - Executive Secretary -- S&T Resource Sponsor Rep.

Air Force Applied Technology Council (ATC)

- Tech transition process should be a 3-legged stool
 - Air Force Research Lab, Product Centers, and Users
- <u>Recurring</u> participation at <u>senior</u> levels
 - MAJCOM/CVs, Product Center/CCs, and AFRL/CC
- Funding commitments for both S&T and transition
- For Advanced Technology Demonstration (ATD) Programs

Army ATD Management Plans Accelerating Transition

- Coordinated and Documented partnership between Warfighting Customer, Technology Developer and Acquisition Buyer
- Proposed by Technologists and Tacticians
- Approved by GO/SES
 - HQ TRADOC Combat Developer
 - HQDA Chief Scientist
 - HQDA, G8 Force Development
 - PEO/PM

ATD Management Plan

Commitments to Transition needed Technology as Fast as Possible

Measuring Technology Maturity Technology Readiness Levels

Actual system "flight proven" through successful mission operations

Actual system completed and "flight qualified" through test and demonstration

System prototype demonstration in a operational environment

System/subsystem model or prototype demonstration in a relevant environment

Component and/or breadboard validation in relevant environment

Component and/or breadboard validation in laboratory environment

Analytical and experimental critical function and/or characteristic proof-of-concept

Technology concept and/or application formulated

Basic principles observed and reported

As Defined in 5000.2-R

SPEED OF TECHNOLOGY CHANGE

In FY03 President's Budget Request New Program Quick Reaction Special Projects – 3 Projects

•Defense Acquisition Challenge Program

Provides opportunities for inserting innovative and cost-saving technology into acquisition programs

Funds used only for review and evaluation of proposals, not implementation

Quick Reaction Fund

Provides flexibility to respond to emergent DoD needs within budget cycle Takes advantage of technology breakthroughs in rapidly evolving technologies Completion of projects within a 6-12 month period

Technology Transition Initiative

Establishes a Technology Transition Council Jump starts selected components/subsystems into systems

Summary

- Tech Transition is critical to maintaining capability edge
- Need Reaffirmed at Highest Levels
- DoD Implementing New Projects and Processes to Effect Transition
- Effective Tech Transition remains a Contact Sport

