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Abstract: ATLAST (Aircraft Total Life-Cycle Assessment Software Tool) was
developed to support life-cycle logistics impact forecasting for new and
aging weapon-system fleets.  ATLAST emulates airframe operations, using
tail numbers and operation profiles, to predict unscheduled and scheduled
removal events according to location and age of components over time. It
then administers a capacity-constrained maintenance and logistic support
process that return assets back to serviceable conditions. The latest version
of ATLAST consists of a "Deployment & Push Pack Spares" optimization
module. The module utilizes a hybrid analytical-simulation optimization
approach to rank spare parts by their effectiveness in increasing availability.
Decision makers can use ATLAST to determine the optimal level of spares for
the deployment of aircraft at a specific location. Detailed mathematical
formulation and three numerical examples are presented in this paper.

I. Introduction
This paper describes the technical features of the Aircraft Total Life-Cycle Assessment
Software Tool (ATLAST) developed by Clockwork Solutions for the military aviation
communities and particularly focuses on forecasting life-cycle maintenance and logistics
impacts associated with spare parts decisions and on Readiness-Based Sparing (RBS)
optimization. The capabilities developed within ATLAST have been derived from
analysis requirements gathered from recent initiatives in military transformation,
recapitalization and Performance-Based Logistics (PBL).  World-class business
organizations have successfully used high-fidelity life-cycle SPARTM models to reduce
ownership cost and increase availability of capital assets such as fixed and rotary wing
aircraft, tanks, radar, submarine combat systems, power plants, chemical plants, and gas
exploration and production facilities. Knowing a system’s life-cycle characteristics and
future behavior in advance enables decision makers to assess the cost-effectiveness of
utilization, logistic support and engineering improvements scenarios before they are
implemented.  However the ability to perform accurate what-if analysis to forecast costs
and readiness in several instances is only a precursor to an effective decision support
system. Initial provisioning of spares, spares replenishment and maintenance scheduling
decisions are all characterized by an astronomically large set of possible scenarios, with
each scenario yielding a different performance level.  For these types of problems, quick
and accurate decision support systems will include a systematic process of ‘optimization’
that reduces an astronomically large number of scenarios to a manageable set of the most-
effective options to be considered for further analysis.
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II. Life-cycle Analysis (LCA)
Life-cycle Analysis (LCA) is a formal process for establishing a quantitative basis in
support of asset, or system management decisions [2-6]. LCA consists of: (i) building a
model representation of a real world system or process, (ii) obtaining data to populate or
instantiate the model, (iii) using the populated model for trade-off analysis by predicting
future behavior - performance and costs - for a set of scenarios, (iv) validating the model
predictions, and (v) presenting the analysis results to decision makers. LCA is used to
support a range of system management decisions during all stages of a system life-cycle:

• During acquisition LCA is used in support of investment decisions. This includes
identification of potential performance and cost weaknesses, assessment of
alternative design options and evaluation of the cost and impact on system
performance of alternative maintenance concepts.

• During deployment LCA is used in support of change management. This includes
assessment of the effects of proposed engineering improvements on system
performance and cost, changes in maintenance procedures and capacity and
supply practices to reflect component and system aging and determination of
spare pool implications for technology refresh.

• Finally, as an asset approaches its end of life LCA is used in support of transition
management. This includes support investment allocation among the systems to
be retired and their replacements, projected remaining life of end-of-life
extensions and assessment of required support resources.

Knowing a system’s life-cycle characteristics and future behavior in advance enables
decision makers to assess the cost-effectiveness of utilization, logistic support and
engineering improvements scenarios before they are implemented. With respect to weapon
system inventories, maintaining affordable readiness while systems continue to age is becoming a
growing problem. LCA provides program managers, item managers, and executive staff
with rigorous quantitative support for strategic, tactical, and operational level decisions
that previously had to be made based on crude approximations and intuition.

III. Readiness Based Sparing (RBS)
Readiness Based Sparing (RBS) optimization algorithm calculates the improvement in
performance for each spare part being added to the field.  Knowing the cost of each spare
part type, the algorithm calculates the performance improvement per dollar spent, called
the performance gradient. The performance gradient is computed for each additional
spare part. The RBS algorithm ranks parts from the highest performance gradient to
lowest. The RBS algorithm next adds the spare with the highest performance gradient and
tallies up the expected performance improvement and budget spent, and then repeats the
process until the desired performance level is achieved or the budget is exhausted. By
selecting the most cost effective part in every iteration, the RBS algorithm ensures, in
principle, that target performance levels are achieved with a minimal cost.

However, in practice traditional RBS optimizers produce grossly incorrect results. The
problem lies in the use of simple analytic expressions or models to compute the
performance gradient. These analytic models ignore key time-dependent factors that can
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have significant impact on spare part levels required to achieve a target performance
level. Among the many important factors that analytic models ignore are the logical
structure of the systems, components age and aging processes, removals stemming from
life limits and maintenance protocols, parts replacement due to remaining life limits,
build rules, sunshine repairs and variability in flow and lead times. In general, the
analytic models assume systems with serial configuration, ageless systems with constant
failure and removal rates, constant parts repair and condemnation rates in the depots and
some of the real-life complexities e.g. redundancies, are accounted for by employing
“correction” factors. These simplifications are made because the analytic models are
unable to express these real life phenomena analytically.

IV. Hybrid Approach for Readiness Based Sparing Optimization
A hybrid approach, suggested by Dubi [11] is capable of providing quick and accurate
decision support by combining the high fidelity of life-cycle (LC) simulation models
together with the efficiency of analytic models. The purpose of the optimization modules
is to eliminate the vast majority of possible scenarios, and to identify a few candidates for
more rigorous evaluation by high-fidelity LC simulation models. The concept of Dubi’s
hybrid approach is illustrated in Figure 1.
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Figure 1: Traditional optimization versus the hybrid approach

In the hybrid approach for RBS optimization, the LC simulation models are used to
generate accurate estimations of system performance, e.g. readiness and availability, to
calculate various events-related metrics, e.g. time-dependent removal/condemnation rates
and associated variance, and to identify and rank the culprit elements/components in the
system that are responsible for the loss of performance for a given reference scenario in a
‘criticality’ table. The simulation model outputs are then fed as inputs into an analytic
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model incorporated into RBS optimization algorithm that produces a sparing policy in
which target performance levels are achieved at minimal cost. Nonetheless, sparing
policies optimization for complex systems in a single step may still produce erroneous
results because simplified assumptions of the analytic model are too excessive compared
to reality. Employing a stepwise optimization process will reduce this risk as shown in
Figure 2. The analytic model will be used only to optimize limited performance targets.
Once achieved, the LC simulation model will be used to generate new predictions of
performance levels, the various event-related metrics and a new ranked criticality list that
are then fed back into the analytic model. The ‘adjusted’ analytic model is then used until
the next limited performance target is achieved. This process is repeated until either
target performance levels are achieved or the given budget is exhausted.
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 V. ATLAST - Aircraft Total Life-cycle Assessment Software Tool
Clockwork Solutions Inc. has developed ATLAST
Aircraft Total Life-cycle Assessment Software Tool [7].
ATLAST is specifically tailored for analyzing new and
aging weapon system fleets. ATLAST is built on top of
the SPAR simulation engine [8]. The SPAR simulation
engine is a commercial grade software product that uses
Monte Carlo techniques to simulate the life-cycle
behavior of industrial systems. SPAR extends traditional
Monte Carlo techniques [1-3] to handle such real world
phenomena as uncertain and incomplete data, component
aging and maintenance, spare parts, variable demands on
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Figure 3: ATLAST high-level logic and functionality

the system, and component interactions. A high level illustration of ATLAST logic and
functionality is shown in Figure 3. Much of the work involved in creating an aviation
life-cycle model has already been designed into ATLAST (i.e. users must concern
themselves only with changing inputs to the existing model, running life-cycle
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simulations, and evaluating life-cycle impacts). The life-cycle logistics impact forecasts
of ATLAST are unique in that the model does the following:

• Captures the current state of a fleet of weapons systems as they are in the field
today.

• Operates them according to operations profiles for the base of which they are
located

• Forces failure and life-limited events according to location and age of components
• Administers a capacity constrained maintenance and logistics support process

necessary to retrieve unserviceable assets back to operational conditions and states.

ATLAST is ‘loaded’ with an initialized fleet of equipment (weapons systems).
Initialization includes the configuration of a serialized system from its main serialized
Line Replaceable Units (LRU’s), through it’s modules, and down through its sub-parts
and components.  The age, location, and status (serviceable and installed, unserviceable,
serviceable spare, in repair, etc) of every component is set to the most current
representation possible.  Each serialized system is then placed at a location where it is
operated according to an operations profile dictated by that location.  Once in operation,
the weapon system accumulates hours against it parts and components, and stops
operating upon a failure event to one of its systems or sub-systems, or due to a
component life-limit that has been reached. When a system is down for repair, the model
then reviews all other life-limited parts in the system to see if they are within remaining
life-limits thresholds, and if they are, takes the opportunity to perform necessary repair
tasks associated with that item. A typical ATLAST data collection process is illustrated in
Figure 4 (for T700 Family of Engines Logistics Requirements Forecasting Model
project).
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Figure 4: High-level ATLAST data collection process
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ATLAST uses the following types of input data:
• System Structure Data – Breakdown structure

(bill of materials), build rules of assemblies.

• Logistic Echelon Structure – Operation bases,
intermediate support bases, depots, alternative
support bases.

• Component Data – Part types, i.e. upgrades
and versions, usage-tracking methods, life
limits and overhaul intervals by part type and
serial numbers.

• Program Data– Flying hour programs and
stress profiles by base and tail numbers.

• Supply and Logistic Data – current
inventories, supply lead times, shipment times,
Not-Reparable at this Station (NRTS)
rates/probabilities, part costs.

• Failure Data –failure distributions by part
types, location and maintenance history.

• Maintenance Data – Maintenance tasks and
time duration, resources and capacities,
logistic consequences, i.e. condemnations,
repairs with and without part replacements or
no-fault-found rates/probabilities.

• Shop Rules – criteria for opportunistic
replacements, repair policies, i.e. overhaul to
like new, minimal, or upgrades/
recapitalization.

• Depot Induction Schedules

ATLAST uses the Monte Carlo simulation
method to “fly” the aircraft according to the flying
hour programs per base. The model creates LRU
removal events, places demands for spares,
implements appropriate procedures to repair the
LRU and its constituent assemblies and parts,
condemn parts, consume parts, and incur costs.
The model repeats this process many times to
create a statistically meaningful database of
events, their consequent demands on the repair
and supply systems, and their impact on aircraft
availability. At the completion of its execution,
the model uses the data collected in order to
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produce several outputs that include:

• Operational availability

• Planned and unplanned removals

• Achieved operating hours or Time
On Wing (TOW)

• Repairs and condemnations at base
and depot levels

• Spare parts unavailability, waiting
times and stock levels

• Logistic delays – Awaiting
resources, awaiting parts

• Responses periods - depot logistic response, depot flow times

• Requirements for spare parts

• Life-cycle Costs (LCC)

The questions that are supported by ATLAST outputs and capabilities include but are not
limited to, the following:

• Will the fleet, or assets at some operating location, achieve required flying hour
programs?

• Will the buy plan be suitable to maintain expected and target availability?
• What will the parts requirements be?
• How do improvements in repair capacity impact repair turn around time and time

on wing?
• Where will the repair and supply bottlenecks be?
• What can I expect to have in the repair pipeline due to removals for cause and life-

limited parts?
• What volume of part condemnations will occur and where?
• Will a repair location be able to keep up with the demands anticipated?
• What percent of time is repair held up due to awaiting parts or awaiting

maintenance conditions?
• What performance gain (fleet availability, time on wing, repair turn around time) is

obtained through selection of an alternate part type, with respect to part and vendor
attributes such as order lead-time, ship time, purchase cost, and reliability?

• If fatigue-testing results in modified life limits on certain parts, how will that
change affect maintenance and supply volume?

• I have a limited budget, how should/could I spend it across supply and
maintenance functions to maximize fleet availability?

ATLAST has evolved over the past three years through development phases supporting
both the US Air Force and US Army.  The extent of the logic included in the simulation
capability and the weapon systems that have been specifically included has increased



Dr. Naaman Gurvitz, Dr. Sergey Borodetsky, Pierre Van Eck
 Clockwork Solutions, Inc, 3432 Greystone Drive, Ste. 202, Austin, TX, 78731

10

with each project supported by Clockwork Solutions.  The projects supported to date that
have contributed to the advancement of ATLAST technology include the following:

RAMSS (Requirements, Analysis, and Management Support System: A production
requirements forecast system for the GE F100 family of engines for use at the Oklahoma
City Air Logistics Center (OC-ALC).  This system addresses a critical United States Air
Force (USAF) need — accurate production requirement forecasts. D041, the USAF’s
current system, uses historical supply system data to project a future profile of demands,
repairs, condemnations, and buys per National Stock Number (NSN). Because D041 was
designed to handle all of the USAF’s weapon systems—one size fits all—it is forced to
use generic, system-independent forecasting methods that ignore the singular aspects of
individual weapon systems.  Initial airframe platforms supported in the model include the
F16, B1B, B2, KC135, and five configurations of the F100 family. Historical
maintenance and airframe performance data was accessed and collected from the
Comprehensive Engine Management System (CEMS).

T55 Turbine Engine Maintenance Workload Simulation Model: The T55 turbine engine is
used to power the Army’s twin engine CH-47 Chinook helicopter.  The US Army
Logistics Integration Agency (LIA) contracted with Clockwork Solutions to create and
utilize predictive models for analyses of life-cycle cost issues related to T55 engine
reliability and logistics.  A second contract involved a data gathering and assessment
project to provide the background data necessary to build and sustain predictive
simulation models.  The work was conducted in coordination with the US Army Aviation
and Missiles Command (AMCOM), PM Cargo Helicopters, and the Integrated Material
Management Center (IMMC).

T700 Family of Engines Logistics Requirements Forecasting Model The T700 family
of turbine engines is used to power the US Army’s fleet of AH-64 Apache and UH-60
Blackhawk helicopters.  The US Army LIA contracted with Clockwork to create and
utilize predictive models for analyses of life-cycle costs related to T700 engine reliability
and logistics.  The work was conducted in coordination with AMCOM, Utility Helicopter
Program Management Office (UHPMO), and IMMC. The primary army data sources
used to construct and refresh the living aviation model included the DA-Form 2410
Maintenance Management system, OSMIS, NSN MDR, and HAS.  The model includes
over 1400 airframe platforms, UH60 and AH64, and a total of over 5500 total engines.
They system manages the flight time, repair activities, shipping, sparing etc. for nearly
300,000 serialized parts/components in each life-cycle simulation.

UH60 A to A Recapitalization Impact to Sustainment Simulation Model: As a extension to
the T700 model, the Utility Helicopter Program Management Office at AMCOM
contracted Clockwork to develop an airframe model, consisting of 31 total LRUs and
their modules and sub-parts.  These LRUs are primarily those that are tracked in the
Army’s Maintenance Management System (TAMMS).  The model has been developed to
support its expansion across additional LRU’s on the aircraft, and across greater number
of aircraft platforms and configurations.

VI. ATLAST Deployment Push Pack Spares Optimization Module
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ATLAST version 4.01 consists of the Deployment Push Pack Spares Optimization
Module’. The module utilizes Dubi’s hybrid approach to optimize ‘push pack’ spares that
accompany aircraft when deployed to new bases or locations. The module was designed
to use the most up-to-date information on the state of the aircraft that are to be deployed
in a new location. For this purpose in the first step, the module generates a deployment
scenario from ATLAST master data model file. Prior to the use of the optimization
module a master data model that represents the state of the system must be already
established.  Clockwork’s services include the establishment of master data models,
including obtaining, cleaning, and preparing the data in appropriate formats. It is
expected that ATLAST users will concern themselves only with changing inputs to the
existing master data model, running life-cycle simulations, and evaluating life-cycle
impacts. A myriad of Scenario Editors aimed to assist users in preparation of necessary
scenarios for ‘What-if’ analysis plans.

Deployment Wizard: A wizard is used to create a deployment scenario from a master
data model. The user:

• Selects aircraft tail numbers to be deployed
• Selects deployment base or location
• Assigns deployment duration
• Establishes profiles of operation of deployed aircraft. A profile of operation is

defined by amounts of scheduled flying hours aircraft are planned to fly in each
quarter during the deployment duration.

• Defines logistic delay period by Work Unit Code (WUC) of Line Replaceable
Units (LRU).  The logistic delay period is defined as expected time elapsed
from a request to ship a spare part until part actually arrives to the deployment
base or location.

• Defines number of histories i.e. repetitions in a simulation run.
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Figure 5: Deployment scenario optimization flow process

Users are capable of modifying additional elements in deployment scenarios, e.g. failure
distributions or costs, by using the standard ATLAST scenario editors.

The optimization module also allows modifications of deployment scenarios so users
may analyze push pack spares policies in various conditions.  When the optimization
module recognizes a master data model as a prior deployment scenario, it will allow users
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either to generate from it a ‘sub’ deployment scenario (deployment scenario is now
defined as a master data model) or only to modify deployment duration, operation
profiles, logistics delay period and number of histories. The creation process of a
deployment scenario is illustrated in Figure 5. Associated snapshots of the deployment
wizard screens are illustrated in Figures 6-9.

Figure 6: Open/Save scenario files & Select aircraft tail numbers screen
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Figure 7: Define deployment period & Assign operational profile screen

Figure 8: Set logistic delays screen
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Figure 9: Set number of histories & Type descriptive information screen

Once the user enters the data, ‘reference scenario’ is simulated (details on ‘reference
scenario’ are provided in following section). The outputs from the ‘reference scenario’
are fed to an RBS optimization algorithm to serve as inputs for an analytical model
(analytic model details described in next section). The RBS algorithm generates two
tables of spare parts ranked by either by ‘effectiveness’ or by ‘cost-effectiveness’ along
with unavailability estimates which can be represented in graphical form, i.e. ‘availability
vs. cost graphs’ as shown in Figures 10-11. The module also allows users to verify
availability estimates by simulating models with corresponding push-pack spares
packages. Verification of expected availability is a recommended practice because
availability estimates with specific sparing policies in complex systems based on single
‘reference’ simulation scenario may not be sufficiently accurate.
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Figure 10: Optimization control panel

Figure 11: Availability versus Cost graphical display screen
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calculates the expected waiting time for spares in a given sparing policy, and in the
second step, these waiting times are used to estimate aircraft availability.  The model
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Select Ranking
Method

Ranked Spares
associated with

Cost and
Estimated
Availability

Run Simulation
Verifications
Automatically

Select Sparing
Strategy and Run a

Simulation Verification

Details of Selected
Sparing Strategy

Red Line
Estimated

Values

Blue Points
Simulated Values

Selected Point
 “coordinates”



Dr. Naaman Gurvitz, Dr. Sergey Borodetsky, Pierre Van Eck
 Clockwork Solutions, Inc, 3432 Greystone Drive, Ste. 202, Austin, TX, 78731

16

aircraft. The model also assumes that LRUs are operationally independent, i.e. failure in
one LRU does not induce a failure in any other LRU). Consequently LRU’s of the same
type are modeled independently in the first step, i.e. in derivation of the mathematical
expressions for expected waiting times.

Let us assume that the model consists of n deployed aircraft and each aircraft consists of
m LRU’s of the same type. We shall assume that the LRU’s fail at a constant effective
failure rate, λ, and a constant logistic delay rate µ. The system can be modeled as a
Markov chain with a finite set of states as shown in Figure 12.

Figure 12: Finite Markov Chain
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n = number of deployed aircraft
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λ = effective failure rate
µ = logistics delay rate
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Equation 2: Steady State Probabilities

The expected waiting time as a function of the number of spares, W(s), can be derived
using Little’s theorem:
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Equation 3: Little’s Theorem

For the Markov chain depicted in Figure 12, W(s) takes the form:
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where:

µ
= 1T  is the expected logistic delay period.

Equation 4: Expected waiting time as a function of number of spares

It is interesting to note that analytic RBS software tools that are based on the Poisson
distribution in fact assume an infinite Markov chain as shown in Figure 13.

Figure 13: Infinite Markov chain
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with a infinite set of steady state linear equations:
01 PnmP0 λ−µ=

�

ss1s1s PsPnmP)1s(Pnm0 µ−λ−µ++λ= +−

�
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Equation 5: Steady state equations of infinite state Markov chain

With the boundary condition of 1P
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Equation 6: Steady state equations of infinite Markov chain
The state probabilities (of Eq. 6) corresponds to a Poisson distribution and the expected
waiting time in this case is similarly obtained by using Little’s Theorem:
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Equation 7: Expected waiting times of an infinite Markov chain
The fact that there are a finite number of LRU’s in the field (installed or spares) suggests
that expressions derived for a finite Markov chain (Eq. 4) are more appropriate than the
expressions of a infinite Markov chain (Eq. 7) especially in cases in which the analysis
involved a very small fleet of deployed aircraft.
The expected waiting time expressions (Eq. 4) are used to estimate the steady-state
system availability as a function of sparing policies, )s,...,s(A L1sys . In developing an
availability expression, a serial configuration of the system is assumed, i.e. aircraft fails
upon failure of any of its LRUs, and that operational LRU’s do not fail as long as the
aircraft is grounded or in a “down” state i.e. LRUs are in passive state with zero failure
rates. With these two assumptions, the steady state availability can be derived as follows:
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and thus takes the form:
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Equation 8: Steady state availability as a function of sparing policies
Where:
mj = number of LRU of type j in a single aircraft
L= number of types of LRU’s composing an aircraft
MTTFj = Mean time to failure of an LRU of type j.
MTTRj = Mean time to replace an LRU of type j in an aircraft.
sj  = Number of provisioned LRU spares of type j.
MTTFsys = Mean time to aircraft failure
MDTsys = Mean down time of an aircraft (when aircraft fails).
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P  = Probability that an aircraft fails because of a failure of an LRU of type j.

W(sj) = Expected waiting time for spare LRU of type j when sj spares are provisioned to the
deployment base.
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By substituting Eq. 4 for every LRU type in Eq. 8, an expression is obtained that quantifies
aircraft availability as a function of a sparing strategy. [It should be noted that the effective
failure rate (denoted by λ) in Eq. 4 is equivalent to (MTTF +MTTR)-1

 while the internal
failure rate (also denoted by λ) equals to MTTF-1]. This expression is essentially the analytic
model that is incorporated in the ATLAST deployment push pack spares optimization
module. The coefficients of the expressions, e.g. internal failures are calculated by post-
processing the outputs of a reference scenario simulation run as explained in the following
section.
Reference Scenario: The reference scenario is initialized with the ‘current’ state of the
deployed aircraft as declared in the master data model, i.e. with installed parts that have
accumulating age and have a maintenance history. These attributes affect:

• Time to next scheduled removal either because of reaching a life limit or due to
limited allowed periods between overhaul or inspections,

• The unscheduled removal distributions of LRUs because these distributions are a
function maintenance history (i.e. number of overhauls) of installed LRU’s.

• The instantaneous failure rates or hazard functions of the installed LRU’s that are
affected by the ‘cumulative damage’ that installed LRU’s have incurred due to prior
usage [9].

Table 1: Coefficients used in analytic model
Item
No.

Symbol Description Input/Output
in Reference

Scenario

Formula/Explanation

1 N Number of deployed aircraft Input

2 mj Number of installed LRU’s
of type j per aircraft

Input

3 MTTRj Mean time to replace LRU
type j in a failed aircraft

Input with
processing

Mean (first moment) calculated
from distribution parameters
according to known formulas

4 Tj Mean time Input with
processing

Mean (first moment) calculated
from distribution parameters
according to known formulas

5 e
jλ Effective failure rate of

LRU of type j. [denoted by
λ in Eq. 2]

Output with
processing

1

j
j

e
j MTTR1

−

�
�

�

�

�
�

�

�
+

λ
=λ

6 λj Internal failure rate of LRU
of type j [Eq. 4]

Output with
processing

max

j
j TA

F
⋅

=λ
∞

7 Tmax Deployment period Output Used for calculating λj

8 A∞ Average (upper bound)
availability during
deployment period

Output Used for calculating λj

9 Fj Expected number of LRU
removals of type j during
deployment period

Output Used for calculating λj.

Note: Fj include all removals
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regardless of cause.
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The deployed aircraft are flown in the deployment base according to operational profiles
defined by the user. Aircraft fail or being grounded because of unscheduled events and
because of a need to remove parts because they have reached a limit – end of life limit or
overhaul/inspection limit. When an LRU is removed it is shipped to higher echelon and
new LRU is immediately send back to deployment base. The reference scenario
represents the upper bound of aircraft availability as no waiting time is ever encountered.
A list of coefficients that are obtained from the reference scenario file from either model
inputs or outputs and used in Eq. 4 is provided in table 1.

VII. Numerical Examples
Analytic Model Validation: For the purpose of validating availability estimates
generated by the analytic model, a simplified test case was developed with identical
assumptions to the analytic model. The deployment scenario test case consists of 5
deployed aircraft for a period of 2 years. Each aircraft consists of 146 LRUs and all
together 92 LRU types. All LRUs have the same exponential failure distribution
regardless of maintenance history. LRU usage in not limited (no end-of-life limits) and
the LRU are not preventively maintained or proactively inspected. All aircrafts fly with
the same operational profile – 2000 flying hours per year. Logistic delay is set 4 days
exactly. Aircraft are of serial configuration and LRUs do not fail when system is down.
The availability vs. cost graph generated by the deployment push pack optimization
module is shown Figure 14 as connected red points. Some of the predicted values were
verified through simulation runs (for every 5 additional spares). These simulated values
are shown in Figure 14 as green (unconnected) points. As seen the match between
predicted and simulated values for the test case is excellent. The level of match can be
quantified through two parameters. The first is “average relative difference” defined as:
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Equation 9: Average relative difference definition
where:
N = Number of comparison runs
Asimulated,i = Average availability in simulated run i.
Apredicted,i = Predicted average availability in case I by analytic model.
AUB = Upper bound availability (in reference scenario)
ALB = Lower bound availability in a simulated run with no spares.

The second is the maximum relative difference encountered in the comparison study, i.e.:
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Equation 10: Maximum relative difference definition
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In the validation case the average relative difference amounted to 1.05% and the
maximum relative difference to only 3.34%.
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Figure 14: Availability vs. cost of ‘Validation’ scenario

Deployment Scenarios with Real Data: In the following three numerical examples, the
number of deployed aircraft and the length of deployment period are consistently being
reduced. The objective is to test the hybrid method with increasing difficulty. As the
number of deployed aircraft is decreasing the deterministic processes, e.g. scheduled
removals, become predominant. As the deployment period is shortened the time
dependent probabilistic processes become predominant and the system is still in transient
and not in steady state. The number of aircraft and the deployment duration in the three
cases are set to:

1. Case A:  10 aircraft for 2 years
2. Case B: 5 aircraft for 1 year
3. Case C: 1 aircraft for ¼ year

In all three cases real aircraft were used i.e. data obtained from the “UH60 A to A
recapitalization impact to sustainment” data model. In these three examples, aircraft and
all installed parts are initialized (with accumulated age and maintenance history) and the
LRUs fail according to Weibull distributions [10] that also depend on the number of
depot overhauls. A full account of the data details on “UH60 A to A recapitalization
impact to sustainment” data model will not be presented in this paper, but it shall be
provided upon request. Availability vs. cost graphs that were generated in each of three
cases, are presented in Figures 15-17.

By comparing the three graphs, we can come to several conclusions. As suspected, with
smaller fleets and shorter deployment periods the analytic model prediction worsens and
it is recommended to verify the expected availability through simulation.

Validation Case:  5 Aircraft for 2 Years
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Figure 15: Availability vs. cost of ‘Case A’ scenario
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 Figure 16: Availability vs. cost of ‘Case B’ scenario

Case B: 5 Aircraft for 1 Year

Case A: 10 Aircraft for 2 Years
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Figure 17: Availability vs. cost of ‘Case C’ scenario
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Figure 18: Extended Availability vs. cost of ‘Case C’ scenario

Case C: 1 Aircraft in ¼ year

Case C: 1 Aircraft in ¼ year
with large spares packages
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One phenomenon that is not revealed in these three graphs, but is apparent in a
availability vs. cost graph shown Figure 18. This is a variation of case C but for which
the spares packages grow very large in number. It is evident that the predicted
availabilities are underestimated i.e. consistently higher average availabilities are
obtained in the simulation runs compared to the analytic model. This is because when
availability is high aircraft fly more. When an aircraft is flying more there are more
failures. The failed LRU’s are replaced with new spares. Initially the instantaneous
failure rates (hazard) of new spares, as in a case with Weibull distributions with shape
parameters larger than one, are low. Therefore, the aircraft is being renewed or
rejuvenated during the deployment period, but it is too short for the effects of aging to
become significant. Once again it is recommended to verify availability estimates through
simulation. In most cases the ‘actual’ availability will be higher than the predicted.

IX. Summary
The growing demand to reduce cost without adversely impacting system performance has
produced requirements to develop accurate, efficient and user-friendly decision support
applications. The hybrid approach is found to be a useful method for optimizing logistic
and maintenance resources in general, and spare parts strategies in particular. The
deployment and push pack spares optimization module within the latest version of
ATLAST, combines a high fidelity life-cycle simulation model together with an efficient
analytic technique for push-pack spares. The hybrid approach forms the basis for the
development of additional optimization applications in ATLAST and general SPAR-
based models.   
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