Air Force Research

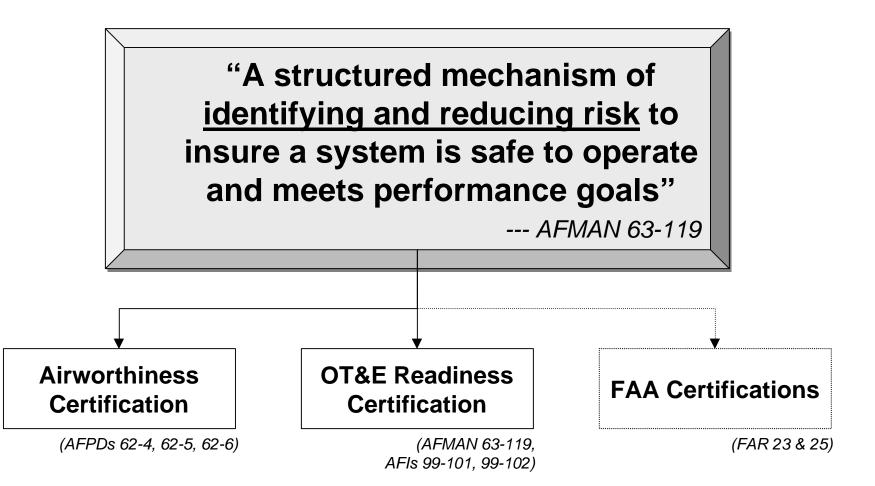
Defending America by Unleashing the Power of Innovative Aerospace Technology

Technologies for Efficient Certification (TEC)

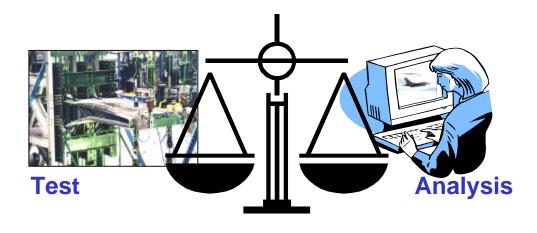
International Test & Evaluation Summit & Exhibition

24-27 February 2003, Victoria, BC

U.S. AIR FORCE


K. Langer, D. Pratt, and D. Paul Air Vehicles Directorate Air Force Research Laboratory

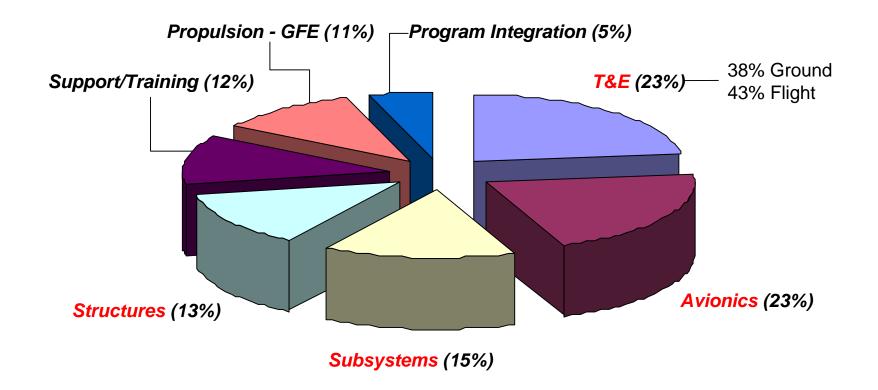
Integrity - Service - Excellence



Elements of Certification

- Compliance with specified certification criteria demonstrated through
 - Flight or ground test
 - Analysis
 - Simulation
 - Previously verified

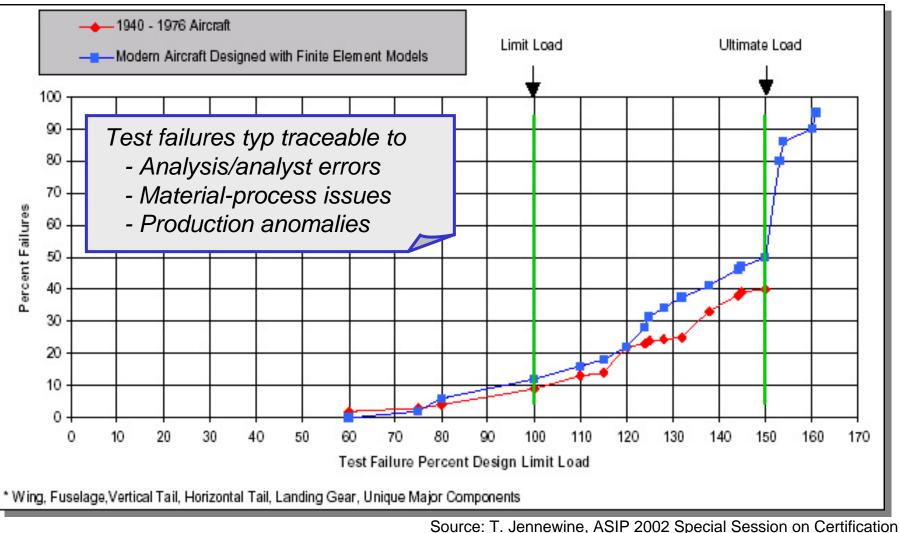
- Demonstration
- Inspection
- Similarity to proven capability



Engineering Design and Certification Costs

AIR VEHICLES DIRECTORATE

Notes:


- Engr design (structures, avionics, & systems) nearly half of program costs
- More than 75% of DT test resources go to ground/flight tests

Typical Test Failures (Structures)

AIR VEHICLES DIRECTORATE

Source: I. Jennewine, ASIP 2002 Special Session on Certification http://jafar.ncsa.uiuc.edu/aiaa/lean_certification/Docs/UAVCERT.pdf

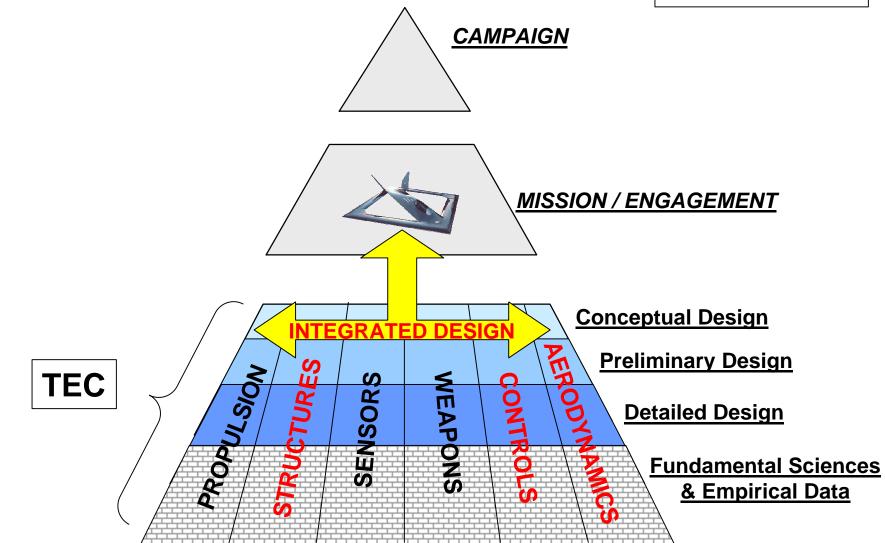
Technologies for Efficient Certification (TEC)

AIR VEHICLES DIRECTORATE

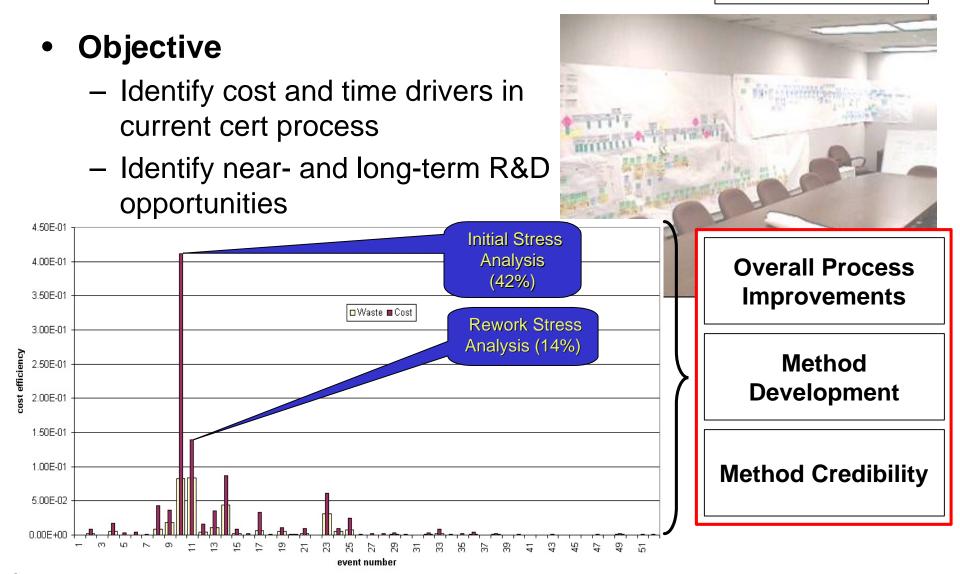
- Increase reliance on analytical methods and tools throughout the certification process to
 - <u>Reduce time and costs</u> associated with certification process
 - Increase system knowledge through more robust and reliable analysis processes
 - <u>Improve reliability</u> of predictions to eliminate surprises in tests and in field

-- Best Value Certification --

The Role of R&D in Certification

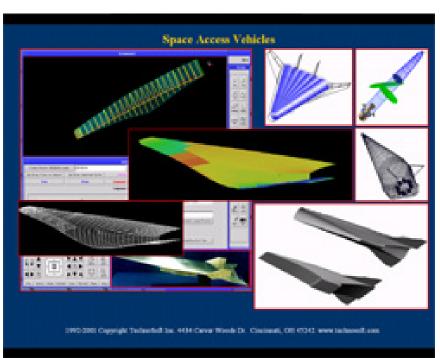

AIR VEHICLES DIRECTORATE

Support the development of an <u>integrated set of analytical</u> <u>methods and tools to enable</u> more efficient certification of aerospace vehicles, systems, subsystems, and components


Analytical Methods and Tools Horizontal and Vertical Integration

TEC Approach

	Overall Certification Process	Analysis Methods	Analysis Credibility	
Identified Deficiencies	 Slow and fragmented design process Model development Config management Sequential processing Test typ not modeled Applicability to future systems?? 			
Potential TEC Contributions	 Rapid modeling techniques Object oriented programming Info/data management Virtual test 			


Efficiencies in Certification of Complex Structural Components

AIR VEHICLES DIRECTORATE

• Near-Term Approach

- Integrated computational environment
 - Streamline design development and certification processes
 - Insert/evaluate new analytical methods & assurance techniques
- Virtual test capabilities
- Data automation & correlation
- Planned validation using component-level testing
- Far-Term Approach
 - Studying concepts for certification of new materials and structural systems

TEC Approach

	Overall Certification Process	Analysis Methods	Analysis Credibility
Identified Deficiencies	 Slow and fragmented design process Model development Config management Sequential processing Test typ not modeled Applicability to future systems?? 	 Physics not always understood Risk quantification and uncertainty modeling generally lacking High fidelity methods typically computationally intensive 	
Potential TEC Contributions	 Rapid modeling techniques Object oriented programming Info/data management Virtual test 	 Non-deterministic methods Faster turn-around times Nonlinear methods Transition to design 	

Airframe Integration of Modern Stores

AIR VEHICLES DIRECTORATE

OBJECTIVE: Improved store separation predictions for internal/external store carriage and release

CHALLENGES

- Many possible configurations
- Uncertainties in parameters
- Error band determination

APPROACH

- <u>Research</u>: Assess applicability of uncertainty analysis
- <u>Development</u>: Incorporate results into trajectory program
- <u>Validation</u>: Wind tunnel testing and T&E leveraging

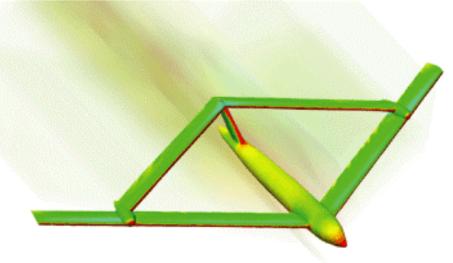
Computationally-based weapons separation simulation R&D tool

- Expanded Weapons Delivery Envelope
- Improved Stores Clearance & Cert Process

TEC Approach

	Overall Certification Process	Analysis Methods	Analysis Credibility
Identified Deficiencies	 Slow and fragmented design process Model development Config management Sequential processing Test typ not modeled Applicability to future systems?? 	 Physics not always understood Risk quantification and uncertainty modeling generally lacking High fidelity methods typically computationally intensive 	 Error quantification is very challenging Limited VV&A metricshow valid is it? Credibility of results, esp. predicting untested cases
Potential TEC Contributions	 Rapid modeling techniques Object oriented programming Info/data management Virtual test 	 Non-deterministic methods Faster turn-around times Nonlinear methods Transition to design 	 Expert systems Benchmarking Validation metrics

V&V of Integrated and Adaptive Control Systems

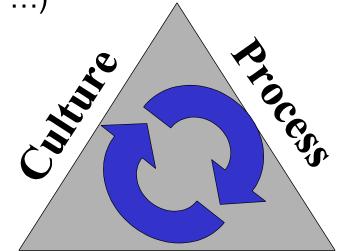


AIR VEHICLES DIRECTORATE

- Objective
 - More cost effective V&V of complex digital flight control systems

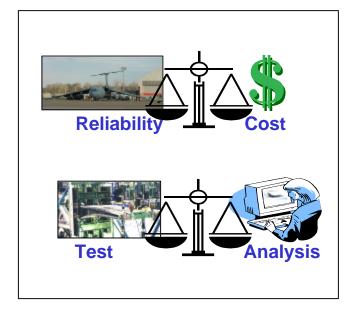
Challenges

- Flight critical SW requires extensive certification
- Complex SW systems
 - Diagnostic capabilities
 - Reconfigurable controls
 - Performance optimization



Transition to Acquisition

- Partnering is key!
- Gov't-industry structures IPT to coordinate activities
 - USAF (AFRL, ASC, AFFTC, ...)
 - USN
 - FAA
 - NASA
 - DARPA
 - Industry
 - Academia
 - NATO RTO WGs



TEC Payoffs

AIR VEHICLES DIRECTORATE

- Smarter designs
- Smarter testing
- Better analysis decisions
- Increased understanding of system interactions
- Design innovation

Risk reduction, design driven process for more effective and efficient certification

AIR VEHICLES DIRECTORATE

Dr Kristina Langer

TEC Lead, AFRL/VASM Wright-Patterson AFB, OH Phone: 937-904-6853 Email: kristina.langer@wpafb.af.mil

Dr David Pratt

Technical Advisor, AFRL/VAS Wright-Patterson AFB, OH Phone: 937-255-5042 Email:david.pratt@wpafb.af.mil

Dr Donald Paul

Chief Scientist, AFRL/VA Wright-Patterson AFB, OH Phone: 937-255-7329 Email:donald.paul@wpafb.af.mil