

Understanding And Managing Chaotic T and E Results

NDIA Test And Evaluation Conference Victoria, B.C., Canada, February 27, 2003

Dr. T.W. Tucker Tactical Technologies Inc. 356 Woodroffe Ave. Ottawa, Ontario, K2A 3V6 Tel: (613) 828-0775, e-mail: twt@tti.on.ca URL: www.tti.on.ca

03/14/2003

- A Brief History Focused On ECM System Effectiveness Test and Evaluation Results
- Primary ECM/Radar System Interactions
- Testing ECM Effectiveness Though Simulation
- Comparison of HWIL and Software Simulation
- Test and Evaluation Steps To Improve The Future History of ECM Effectiveness T&E

IIII 1999 ECM Test Results*

- Open Air Range and Hardware In The Loop results exhibited very weak statistical correlation
- Data collected were not sufficient for verifying and validating the Advance Distributed Simulation based test architecture
- Statistical correlation between the ADS and baseline tests was also very weak and could not support V&V
- The operators were a significant source of variation ... however, ... found evidence ... that the samples may not fully capture the real variation possible
 - * Joint Advanced Distributed Simulation Electronic Warfare Tests

Earlier ECM Test Results

- ALQ-131 Jammer (1995)
 - "Band 3, is ineffective against some threats"
 - "Testing ... indicates significant problems persist"
 - GAO Report NSIAD-1995-47
- ALQ-165 Jammer (1996)
 - "Key performance criteria for effectiveness were not met"
 - "Can not certify ALQ-165 (ASPJ) is effective against original requirement"
 - "The ASPJ was not operationally effective because it did not meet the requirement threshold value for increasing the survivability of an ASPJ equipped F/A-18 strike force"
 - DOT&E 1996 Annual Report
- Such Results Indicate Problems in Testing Jammers to Demonstrate That Their Effectiveness Meets Requirements

JADS ECM Test Example

• Phase 1

Open Air Range (OAR)Tests: ALQ-131 h/w on F-16 vs SADS VIII h/w (WTR, Edwards AFB)

Hardware In The Loop Tests: ALQ-131 h/w vs SADS VIII h/w (AFEWS, Fort Worth)

• Phase 2

Distributed Simulation Tests: Digital ALQ-131 s/w Model (Patuxent NAS) vs SADS VIII (AFEWS, Fort Worth)

• Phase 3

Distributed Simulation Tests: ALQ-131 h/w on F-16 (ACETEF, Patuxent NAS) vs SADS VIII h/w (AFEWS, Fort Worth)

SADS VIII Characteristics

 Target Acquisition Radar With Operator In The Loop
 Target Tracking Radar With Operator In The Loop

Simulated Command Guided Surface To Air Missile

From "JADS Electronic Warfare Baseline Testing", a Paper Presented to Military Operations Research, June 1999, and "A Multiprocessor Architecture for a Threat Radar Simulation System", Australasia Workshop on Parallel and Real Time Systems" July 1994.

Tactical Technologies Inc., All Rights Reserved

TTI's Tests of RGPO vs SAM(CG) Miss Distance Results (40 Runs Each)

TTI

Percent of Runs vs Miss Distance For Four Different Trial Configurations

JADS and TTI Comparison

• JADS HWIL and TTI Software Simulation Trials Produce Similar Results, Including:

Statistical Correlation Is Poor To Non-Existent From Data Set To Data Set

For Similar Input Conditions, Output Results May Differ Substantially From Run To Run

> Consistent With Chaotic Behavior

What Is Chaotic Behaviour?

- Noticed By Lorenz In Weather Prediction Studies
- Plot Trajectory Depends On Initial Conditions
- May Possess "Quasi-Stable Regions
- Plot Trajectory Is Not Repetitive
- May Possess Multiple
 "Strange Attractors"
- Final Result Depends On Duration Of Interaction

• Caused By Non-Linearities In Extended Dynamic Interactions

Missile Miss Distance And Chaos

- Missile Miss Distance Occurs After *Extended Dynamic Interactions* Between ECM And Weapon Systems
- Weapon Systems Contain Many *Non-Linear Functions* and Components, Such as Radar Mode Switching and Tracking Discriminators
- ECM Signals Inherently Cause Radars To Operate In Non-Linear Regions And With Non-Linear Logic And Functions
- Extended Dynamic Interactions Between Non-Linear Systems Inherently Gives Rise to *Chaotic Behavior*
- Chaotic Behavior Means a *Small Change in an Input* Condition or Parameter Can Lead To a *Large Change in Miss Distance*

-90 -45 45 90 135 180 0

Missile Launch Selection Launch Time: 0 to 2 sec

Velocity: 800 to 1100 m/s

Monte Carlo

Miss Distance Scatter vs Missile Launch Angle (Command Guided Surface To Air Missile)

•400·

Miss Distance (m)

Chaotic Miss Distance Results: A Function Of Missile Launch Direction

300 200 100 -180 -135 Missile Launch Angle (deg)

03/14/2003 13

Tactical Technologies Inc., All Rights Reserved

A Different Scatter Plot: Three Miss Distance Thresholds

T And E Steps

- System Performance Test Specifications Based On:
 - Analysis Models that Include Weapon System Non-linearities, Like Mode Switching and Tracking Discriminator Characteristics
 - Weapon System With Tightly Defined Parameter Values, Particularly In Tracking and Guidance
 - Probability Of Successful Performance Based On Multi-Peaked Probability Distributions
- Evaluations Based On:
 - Chaotic Behavior Expectations
 - Non-Linear Probabilistic Analysis Approaches And Tools

Understanding And Managing Chaotic T and E Results

NDIA Test And Evaluation Conference Victoria, B.C., Canada, February 27, 2003

The Beginning

Tactical Technologies Inc., All Rights Reserved