

Advanced Mass Spectrometric Techniques for DOD analytes of interest

Richard Burrows Severn Trent Laboratories

- > HPLC/MS/MS
- IC/MS/MS
- ➢ GC/MS/MS
- Electrospray ionisation
- > Atmospheric Pressure Chemical Ionization
- Chemical Ionization
- High Resolution Mass Spectrometry

Electron Impact GC/MS

> Advantages

- Powerful separation
- Structural information from fragmentation
- Affordable instrumentation

3

Universal detector (if the analyte gets to the MS)

Disadvantages

- Most organic compounds will not go through a gas chromatograph
- Some compounds fragment too much
- No selectivity

Desirable method characteristics

Linearity - predition
Sensitivity - low description
Precision - reprose
Accuracy - prose
Selectivity - ability

() (2)

- predictable instrument response
- low concentration reliably detected
- reproducibility of results
- proximity of results to true value
- ability to differentiate compound of interest from interferences
- Ruggedness ability of method to work properly in a variety of types of samples

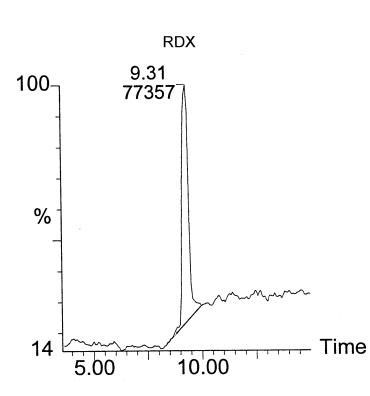
Energetic compounds

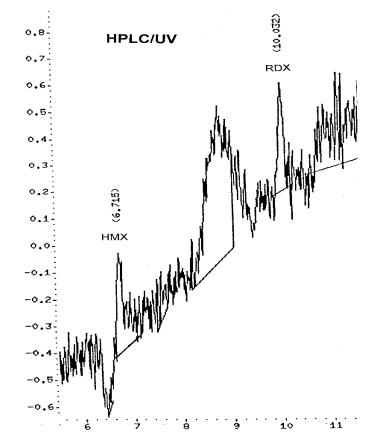
Standard method is 8330 HPLC/UV

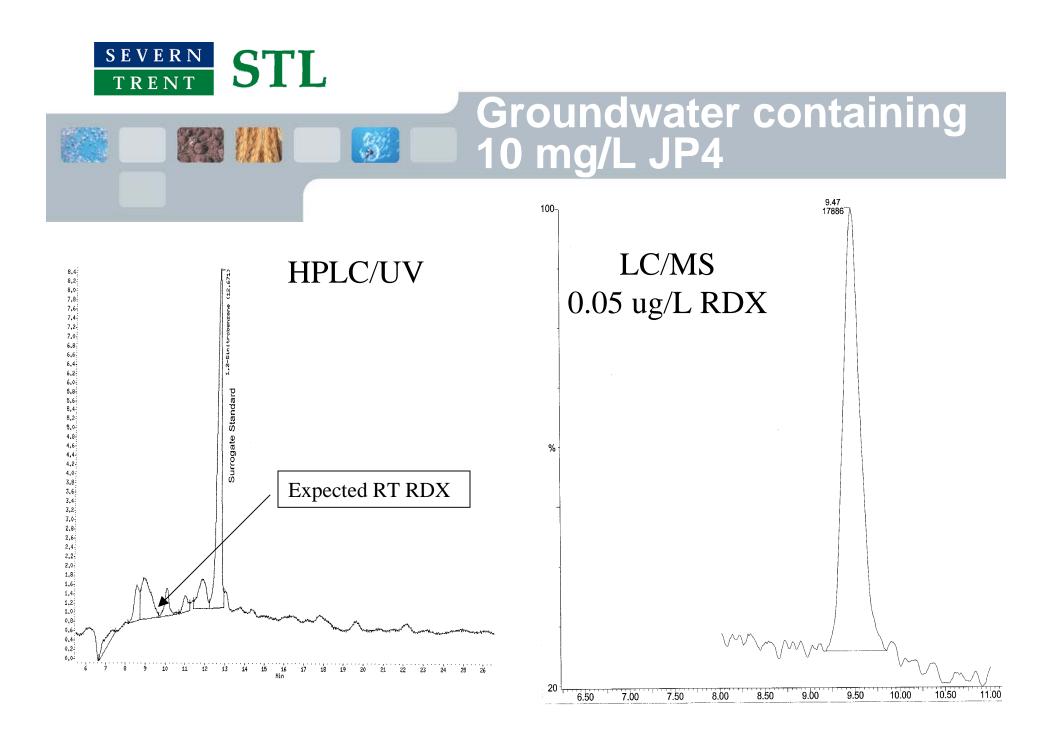
- Insufficient
 - Sensitivity
 - Selectivity
 - Ruggedness
- Solution
 - LC/MS
 - Extraction similar to 8330 2g sonicated in acetonitrile for soil, SPE of 1L water eluted with acetonitrile to 5 mL final volume.

> Analysis

- LC- 250 mm C18 column, mobile phase 0.01M ammonium acetate in water and methanol mixture
- MS- APCI negative ion polarity single stage MS detection of characteristic mass
- 3 isotopic labeled internal standards and one surrogate used for QC compounds
- Calibration 10 to 300 ug/L instrument concentration

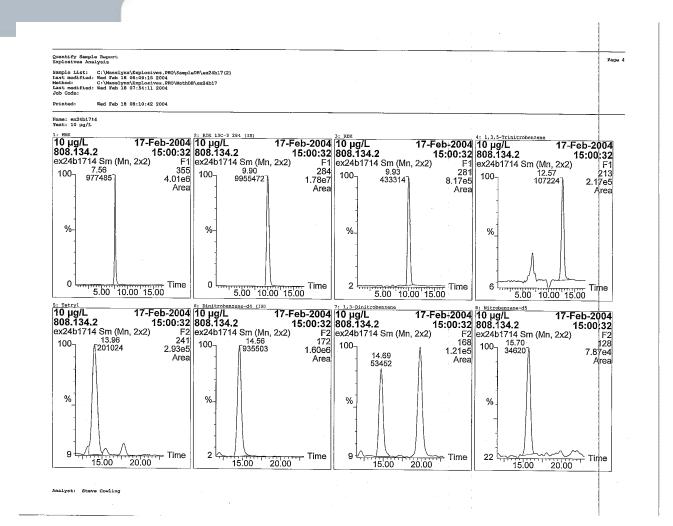

Detection limits, LC/MS vs. LC/UV

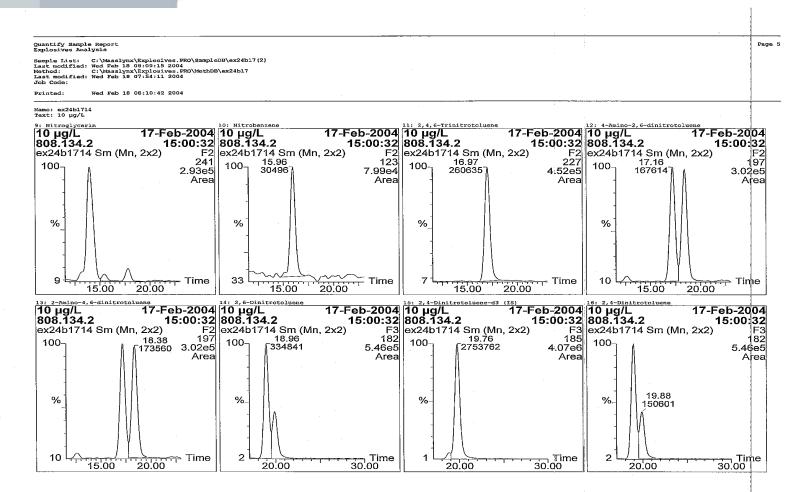

Analyte	LC/UV MDL	LC/MS MDL	Factor
1,3,5-Trinitrobenzene	0.037	0.015	2
1,3-Dinitro benzene	0.065	0.008	8
2,4,6-Trinitro to lue ne	0.047	0.015	3
2,4-Dinitro to lue ne	0.068	0.013	5
2,6-Dinitro to lue ne	0.075	0.013	6
2-Amino-4,6-dinitro to lue ne	0.058	0.012	5
2-Nitro to lue ne	0.065	0.022	3
3-Nitro to lue ne	0.034	0.016	2
4-Amino-2,6-dinitro to lue ne	0.028	0.015	2
4-Nitro to lue ne	0.042	0.014	3
HMX	0.068	0.015	4
Nitrobenzene	0.096	0.020	5
Nitro g lyc e rin	0.374	0.039	10
PETN	0.529	0.016	33
RDX	0.098	0.006	18
Tetryl	0.084	0.010	9

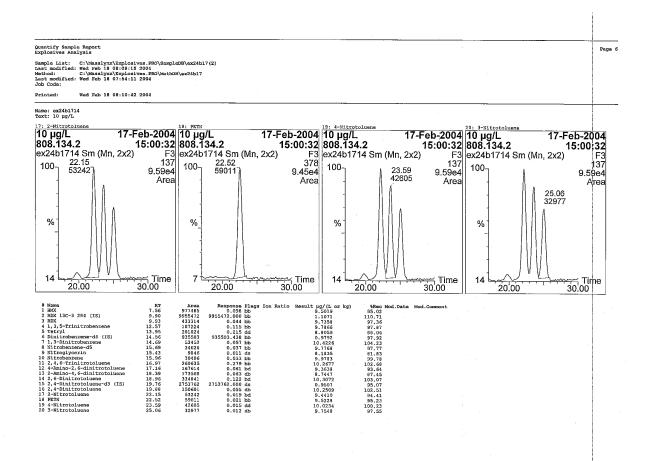


LC/MS

10 ug/L RDX




Explosives low std Compounds 1-8

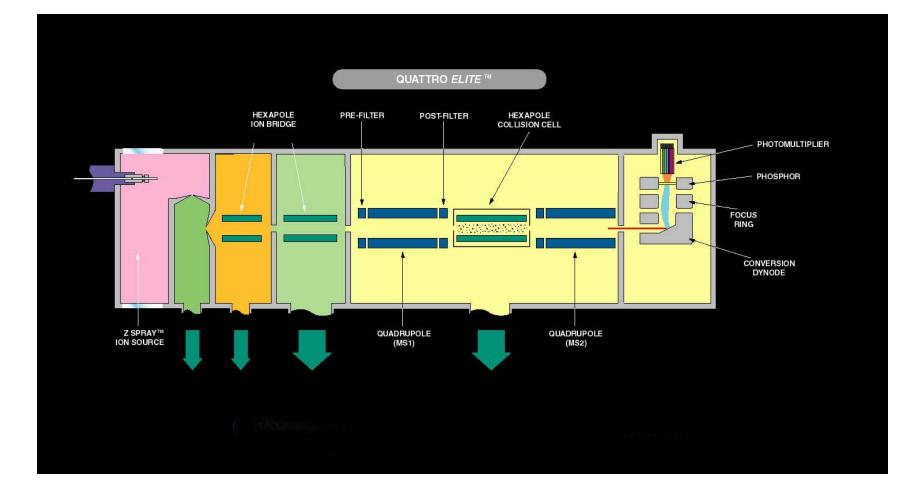

263 (// A)

Explosives low std Compounds 9-16

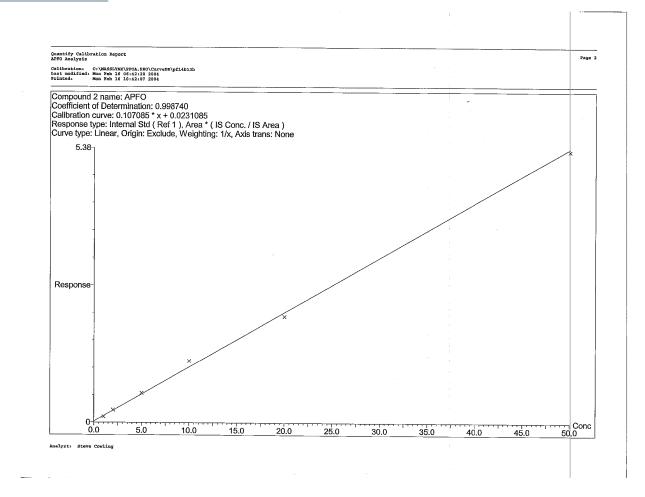
Analyst: Steve Cowling

Analyst: Steve Cowling

- Used in the manufacture of fluoropolymers nonstick cookware, water and stain resistant finishes, fire resistant finishes
- Persistent in the environment
- Related compounds, Perfluorooctyl sulfonate (PFOS) and perfluorooctanesulfonic acid (PFOSA) can be analyzed using the same method



- Extraction
 - Aqueous SPE extraction using C18 cartridge
 - Solids 10g sonicated with methanol
- LC 250 mm C18 column, aqueous formic acid and methanol mobile phase
- ➢ MS ESI negative ion MS/MS detection
- C13 labeled PFOA used as an internal standard and PFNA (closely related cmpd) used for a surrogate
- Calibration 1 to 50 ug/L instrument concentration

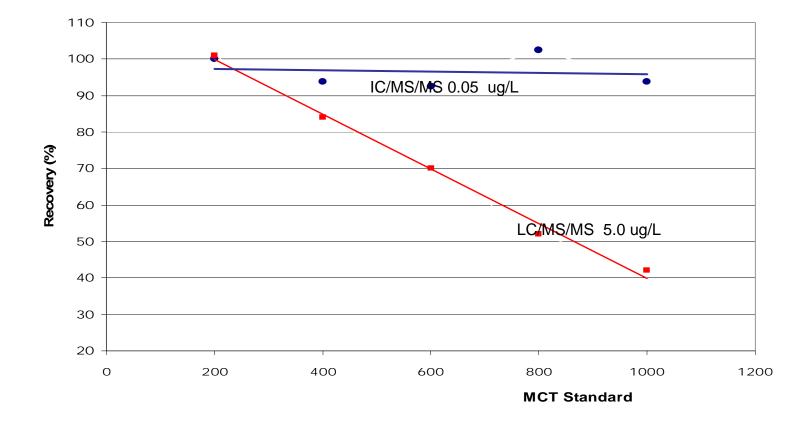


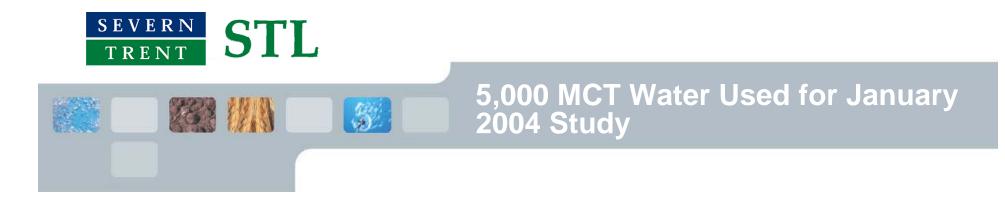
LC/MS/MS

PFOA ICAL

3

PFOA low std


Quantify Sample Report APFO Analysis			
Sample List: C:\MASSLYNX\PF0A.PRO\SampleD8\ Last modified: Won Feb 16 10:41:14 2004 Wethod: C:\MASSLYNX\FP0A.PRO\McLbB\pf Last modified: Fri Feb 13 10:13:20 2004 Job Code:			
Printed: Mon Feb 16 10:42:09 2004			
Name: pf14b1343		· · · · · · · · · · · · · · · · · · ·	
Text: Calibration 1 ppb 1: PFOA 13C2	2: APF0	3 = APPN	
Calibration 1 ppb	Calibration 1 ppb	Calibration 1 ppb 808.130.2 17:16:50	
	-1 pf14b1343 Sm (Mn, 2x2) F1		
100 5.20 415.1 > 369	.9 100 5.20 413 > 218.9	100 6.41 463 > 218.9	
421659 1.20 An	- 1 1 .	15848 3.92e4	
	ea Area	% Area	
	0 7,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	
%-	pf14b1343 Sm (Mn, 2x2) F1		
	100 5.20 413 > 368.9 48197 1.39e5		
	∎ %-	1.2000	
0 Tim 5.00 10.00	e 0 ¹	0 ¹	
0.00 10.00	3.00 10.00	3.00 10.00	
1 PFOA 13C2 5.20 421658.906 bb	1.0360 103.60 1.000	e (I. or kg) Dilution Mod.Date Mod.Comment 1.000 1.000	
2 APFO 5.20 0.114 bb 3 APFN 6.41 0.121 bb	0.8516 85.16 1.000 1.0561 105.61 1.000	1.000 1.000 1.000 1.000	
Analyst: Stove Cowling			


Perchlorate

- Extraction soils tumbled with DI water, waters are analyzed directly
- IC Analysis
 - IC AG16/AS16 column, using an eluant generator producing a potassium hydroxide mobile phase, a suppressor system and time actuated valves for sample diversion during the analysis
- MS ESI negative ion MS/MS detection, heavy chlorine isotope monitored for confirmation
- > O18 labeled perchlorate internal standard
- Calibration 10 500 ng/L

Note: 1,000 MCT = 1,000 mg/L each chloride, sulfate, bicarbonate

De-ionized water > 18 Megohm-cm To which was added: Chloride (NaCl) = 5,000 mg/LSulfate (Na₂SO₄) = 5,000 mg/LBicarbonate (KHCO₃) = 5,000 mg/LTotal dissolved solids = 22,600 mg/L

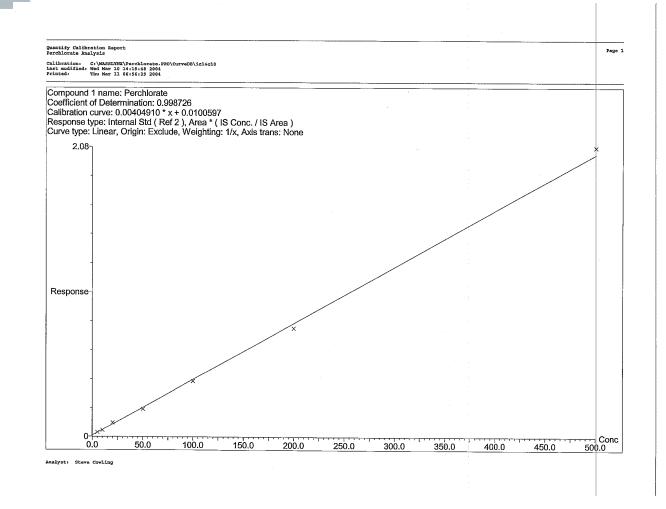
- Blank : 3 replicates of high TDS water
- 0.01 ug/L: 4 replicates in high TDS water
- 0.25 ug/L: 4 replicates in high TDS water
- 0.50 ug/L: 4 replicates in high TDS water

Notes:

- 1.0 ug/L O-18 perchlorate added to each
- Entire series prepared & analyzed on 3 days

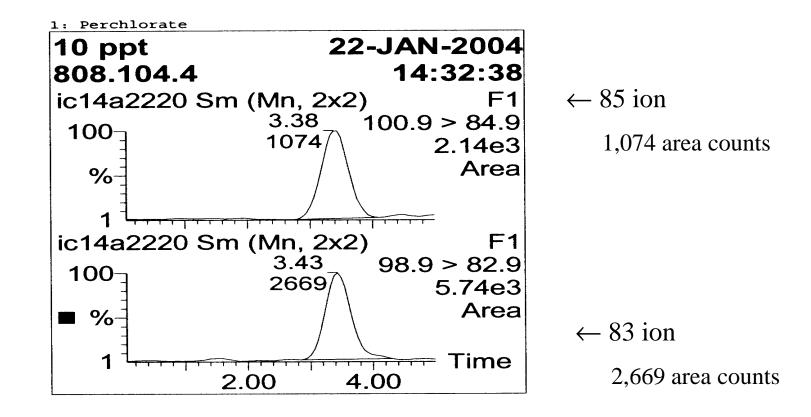
(A)

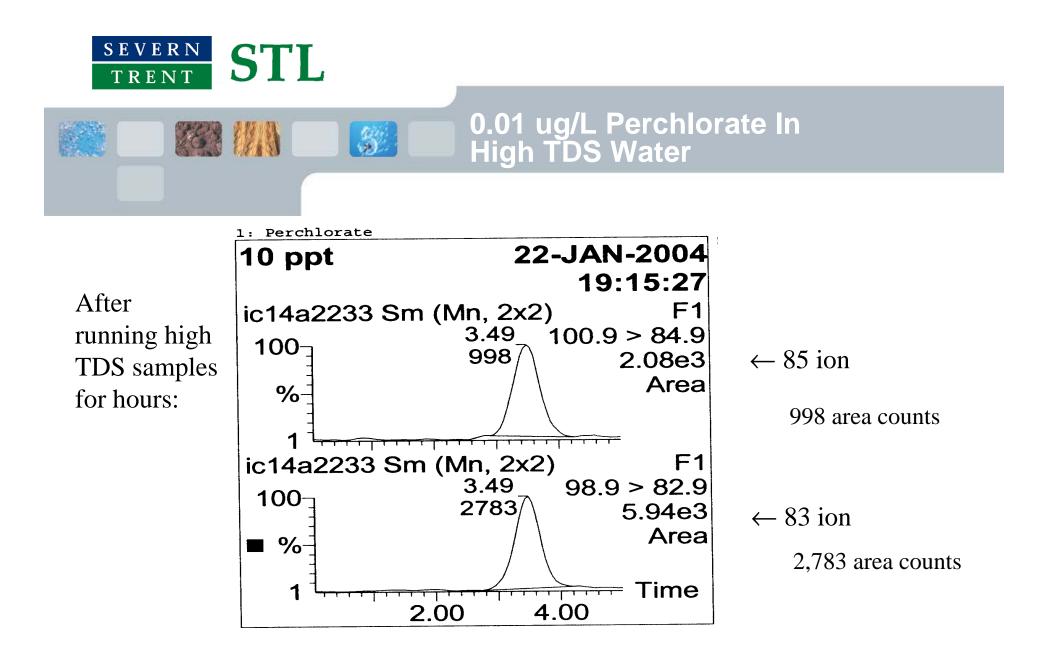
IC/MS/MS Calibration


Each day of analysis:

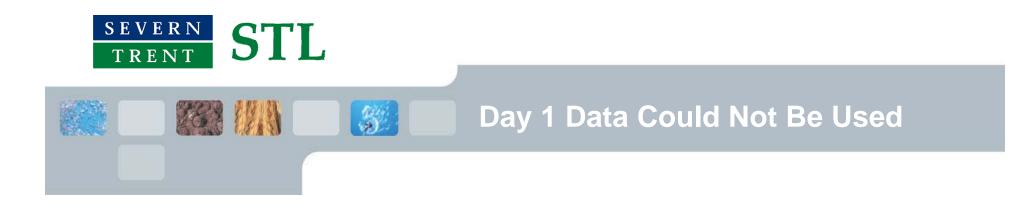
<u>Level</u>	(ug/L)		
1	0.005		
2	0.01		
3	0.02		
4	0.05		
5	0.10		
6	0.20		
7	0.50		
8	1.0		

$$r = 0.9998_{day 1}, 0.9999_{day 2}, 0.9983_{day 3}$$


Perchlorate IC CAL



3


0.01 ug/L Perchlorate Calibration Standard

True RT = 10.5 + 3.4 = 13.9 min.

True RT = 10.5 + 3.5 = 14.0 min.

- Perchlorate contamination in all samples at 0.06 - 0.08 ug/L
- Contamination control proved to be more challenging at ppt levels
- Previously confirmed perchlorate in some lab detergents at low mg/kg levels
- > This time traced to vinyl lab gloves

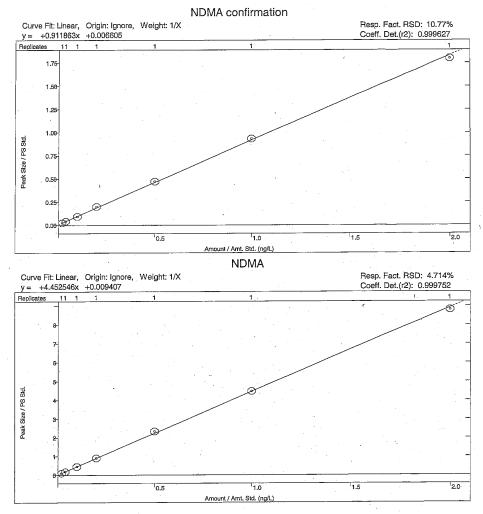
(1) (2)

IC/MS/MS Precision / Accuracy Data in High TDS Water

Day2 &Day3:

		Mean	
Test No.*	True Value	Recovery	RSD
	(ug/L)	(%)	(%)
1	0.01	116.8	14.9
2	0.25	99.2	2.71
3	0.5	93.6	2.84

- Spikes prepared in water with 22,600 mg/L TDS
- No pretreatment
- 8 replicates tested per concentration, 4 on each of 2 days
- O-18 labeled perchlorate used as internal standard


N-Nitrosodimethylamine, NDMA

GC/CI/MS/MS positive ion analysis

- CI gas ammonia
- Extraction CLLE of 1L water with CH₂Cl₂, concentration to 1.0 ml final volume
- ➢ 624 type capillary column with helium carrier gas
- Cryogenic cool on-column injection
- NDMA-d6 used for an isotope dilution standard
- Concentration 1.0 to 100 ug/L instrument concentration

NDMA Calibration

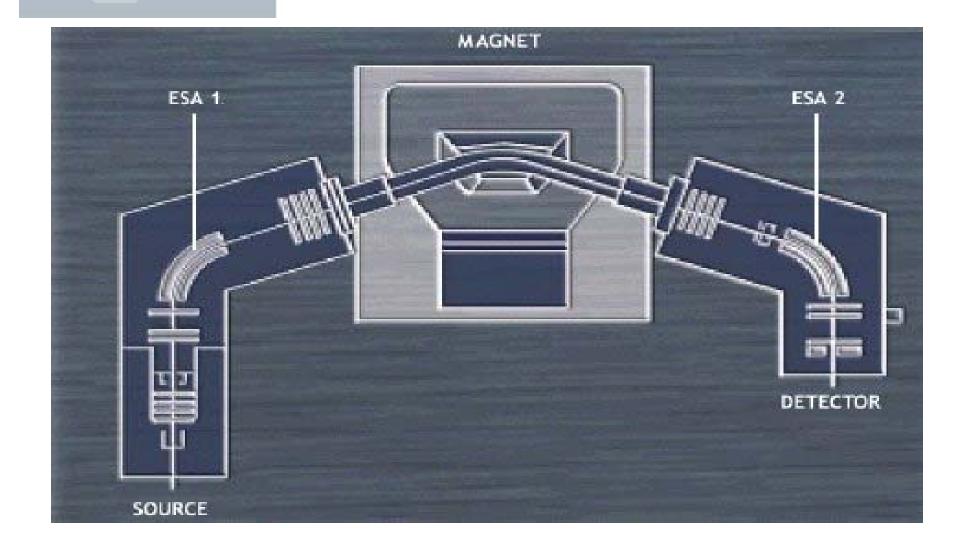
NDMA low std

Print Date:	21	Mar	2004	12:57:13
-------------	----	-----	------	----------

Target Compound Report for #3 from nd34c20001.xms - Page 3

Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:	1.0 ppb std Varian MS Area 3/20/2004 3/21/2004 Calibration None	#1 3:43 PM	Operator: Last Calib Calibratior Data File: Method:		Internal	04 12:55 Standard nd34c20 ial split.n	1 001.xms	
Compound Informatio	n							
Peak Name: Result Index: Identification	NDMA A 3	dduct Compound Number:	з с	AS Number	r: None		Identified	ł
Parameter		Specification	А	ctual			Status	
Search Type Retention Time Match Result		Spectrum 15.050 +/- 0.100 N-R >= 700	11	5.048 min. 000			Pass Pass	
Integration and Quanti Parameter	tation	Specification	Δ	ctual			Status	
Quan Ions IS Peak Name		75.0 NDMA-d6	<u></u>	otaan			otatus	
Calibration Equatio Area Height	n	Linear, Include, 1/X >=100	6. 1.	= +3.7061> 920e+6 456e+6	c +0.0		Pass	
Amount (RRF) Match Types:		mal-Reverse	3.	706	0,074	1129		
MCounts Quan lons: 75.0 N			FILTERED		0,0			
1.25-								
1.00-								
0.75	Start Integration		· · ·		E	nd tegration		
0.50-		Starti Search		End Search				-
0.25			/					
-0.00-								-
-0.00	1							

More than just Dioxins!


How a High Resolution Mass Spectrometer Works

- Target analytes are fragmented in the ion source of a triple-sector instrument
- Ion fragments are selected by energy-dependent trajectory in first electrostatic field (ESA1)

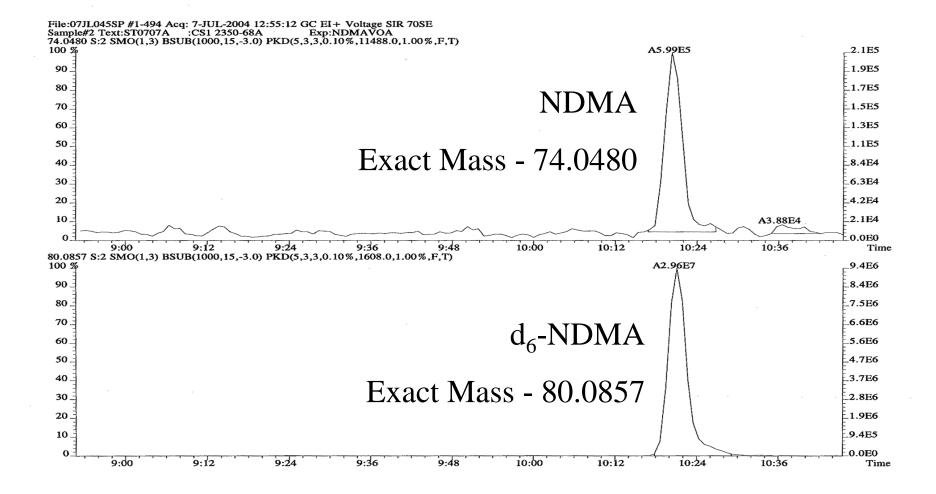
- Exact mass fragments selected by mass-dependent trajectory in magnetic field (Magnet)
- Residual interferences filtered and removed in ESA2
- Exact mass fragments are detected at the photomultiplier with sensitivity at low femtogram levels (on column)

Triple Sector Mass Spectrometer

Why High Resolution Analysis is Better

- A target analyte's exact mass is highly characteristic of its identity
- Mass resolution measures the ability of the instrument to isolate and detect a particular exact mass

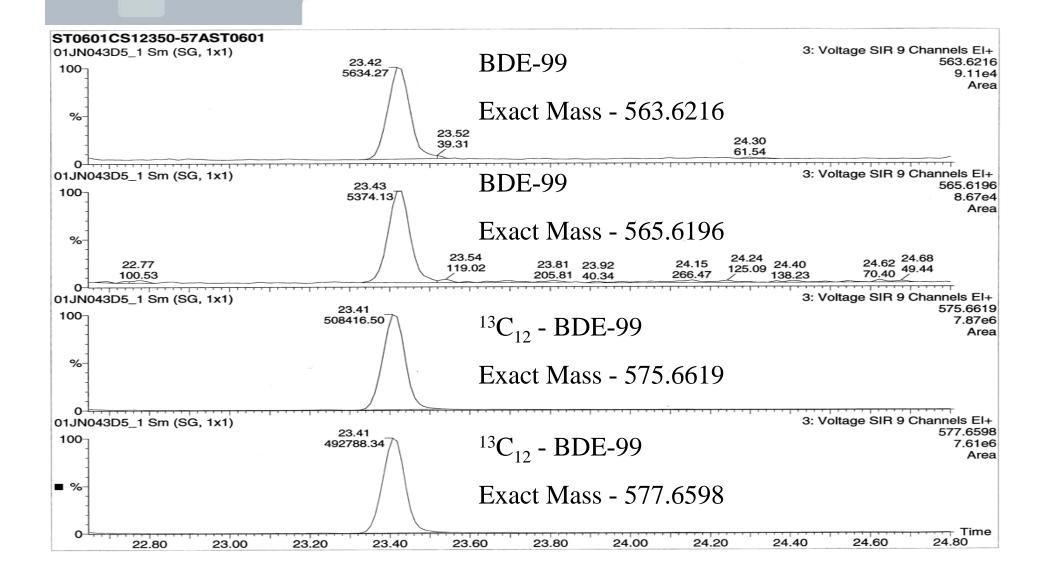
() (2)


- Triple sector instruments operate at mass resolution of ~10,000 (high) vs ~100 (low) for quadrupole instruments.
- High Res analyses are nominally 100 times better at filtering interferences than conventional Low Res analysis
- High Res analyses offer improved sensitivity, selectivity, and ruggedness.

1838 (/. A

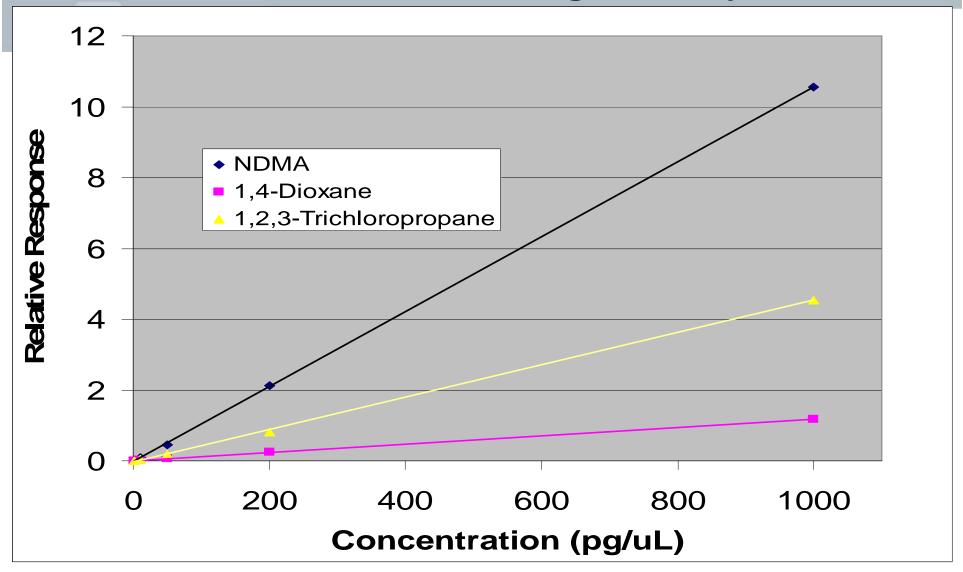
() ()

NDMA Low Calibration Standard (1 ng/L)



68 1/1A

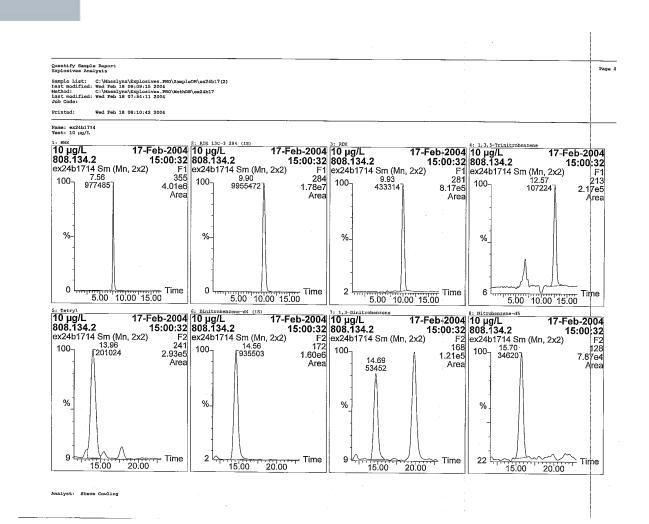
1000 1000


Brominated Flame Retardant Low Standard (20 pg/L)

263 1/1

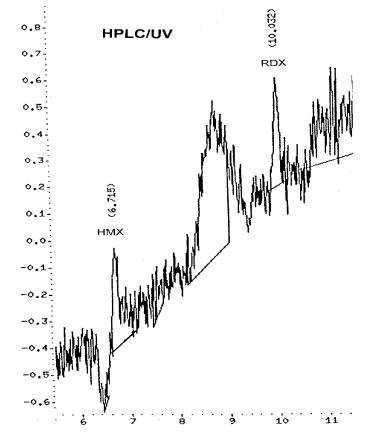
Calibration Curve for Low Level Organics by HRMS

Conclusions


Electron impact GC/MS works for many analytes, but not for everything

(1) (2)

- LC/MS, LC/MS/MS, IC/MS/MS and CI-GC/MS/MS and High Resolution MS can provide definitive data
- MS/MS is very desirable when soft ionization techniques are used
- Ionization suppression is a concern in LC/MS, and isotopically labeled internal standards are the best solution
- When a lab claims a low detection limit, check the signal to noise!


263 (// A)

Good

Not so good

Conclusions

- Electron impact GC/MS works for many analytes, but not for everything
- LC/MS, LC/MS/MS, IC/MS/MS, CI-GC/MS/MS and High Resolution MS can provide definitive data
- MS/MS is very desirable when soft ionization techniques are used

- Ionization suppression is a concern in LC/MS, and isotopically labeled internal standards are the best solution
- When a lab claims a low detection limit, check the signal to noise

Mark Dymerski	Acknowledgments Steve Cowling STL Denver	Larry Penfold				
Eric Redman Pamela Schemmer STL Sacramento						
Richard Burrows	Further Information (303)736-0100	<u>n</u> rburrows@stl-inc.com				