

Tentatively Identified Compounds

Characterization and Data Usage Issues

Marilyn Hoyt Bill Alsop Andrew Nelson

Tentatively Identified Chemicals (TICs)

- Non-target chemicals detected during analyses for volatile and semivolatile organics by GC/MS
- Tentatively identified by forward computer search against NIST library (75,000-147,000 compounds)
- Reported with "Quality" factor for match
- May be reported as specific chemical or member of chemical family

Laboratory Responsibilities

- Conduct computer search against library spectra
- Review results, select best match to report
- Estimate concentrations
- Flag TICs if in blank

Program Responsibilities

- No clear guidance for TIC data usage
- Need to determine possible importance
 - o Artifact from sampling or analysis?
 - ° Background?
 - o Natural product?
 - ° Previously unrecognized contaminant at site?
 - ° Related to known compounds of interest?
- Decide how to use information

Case Study – Eastern US Site

- Military training range
- Sole source aquifer
- Basic CLP list for VOC and SVOC
- Additional target organics selected after review of potential chemicals released from training activities
 - Explosives and explosive degradation products
 - Propellants
 - ° Ordnance fillers, additives
 - ° Smokes, dyes

Site TICs

- 3,600 Groundwater samples 4,700 TIC detections
- 7,700 Soil samples, 106,000 TIC detections
- Over 600 different chemicals reported more than once
- Many intimidating long chemical names
- Agency and public concern for the unknown – potential toxicity

TIC Evaluation-Information Needs

- Common name
- Possible relationship to training activities
- Common uses/sources
- Potential toxicity
- Fate and transport potential groundwater threat?

Information Sources

- Merck Index
- TOXNET -HSDB
- Encyclopedia of Explosives,
 US Army R&D Command
- Google
- US Patent Database
- Literature search
 - Medline
 - ACS journals

TIC Categories at Training Range

- Possible sources
 - Munitions-related
 - Common products -related to non-training site activities
 - ° Aliphatic hydrocarbons petroleum fuels, natural sources
 - Polyaromatic hydrocarbons (PAH)
 - Complex natural products
 - Artifacts
- Many TICs could fit into multiple categories
- Many TICs remain as unknowns

Distribution of TICs in Groundwater

Distribution of TICs in Soils

Munition-related TICs

3% of TICs in groundwater, 6% in soils

- Explosives TNT, RDX; biodegradation products
 - All reported are current target analytes for explosives method
- Plasticizers, stabilizers, soaps, waxes
 - Phthalates
 - Soaps
 - Polychlorinated naphthalenes
 - Phosphate esters
 - Hydrocarbon waxes

Common Product Chemicals

- 25% of groundwater TICs; 5% soil TICs
- Pesticides
- Ethylene glycols antifreeze
- Detergents
- Antioxidants
- Sunscreen
- Pharmaceuticals
- Common solvents
- Several also found in USGS survey of surface waters

Common Product Chemical Examples

- Diethyl toluamide = DEET insect repellant
- Nonylphenol = detergent metabolite
- 1,1-oxybis-2-ethoxyethane = ethylene glycol ether, antifreeze
- Butylated hydroxytoluene = BHT, antioxidant, food additive
- Butyl hexadecanoate = ant repellant
- Natural products with known commercial applications included in this category – e.g limonene

Complex Natural Products

- 1% of groundwater TICs, 29% of soil TICs
- A -

Complex hydrocarbon structures

Beta-pinene (C₁₀H₁₆)

- Terpenes
- Plant sterols
- Animal sterols
 - Testosterone
 - Progesterone

Borneol (C₁₀H₁₈O)

Testosterone ($C_{19}H_{28}O_2$)

Stigmasterol (stigmasta-5,22dien-3ß-ol)

Hydrocarbons

Aliphatic and aromatic hydrocarbons

- 29% groundwater TICs, 21% soil
 TICs
- Petroleum fuels, hydrocarbon solvents
- Some likely natural products

PAH

- ° 3% groundwater TICs, 3% soil TICs
- ° Petroleum
- ° On-site combustion
- Background atmospheric deposition

Program Uses of TIC Data

- Monthly review of TICs in groundwater with source attribution
- Confirm target analyte results
 - Many TICs are targets for other methods
 - Explosives, biodegradation products in 8330 analysis
- Additions to target analyte lists
 - Polychlorinated naphthalenes added GC/MS/SIM method after TIC detections
 - Added HPLC/MS analysis for dyes
 - Added plasticizers, propellants to SVOC list

Risk Assessment Options

- Determine relationship to site activities
- Establish % detection criterion for consideration in risk assessment
- Research literature for toxicity, exposure and fate and transport data
- If no data available, determine if appropriate surrogate with toxicity data can be identified
- Determine if appropriate surrogate with exposure, fate and transport data can be identified
- Incorporate uncertainty in risk assessment

Conclusions

- TICs can provide information useful to:
 - Modify the target analyte list to address nonstandard chemicals of potential concern
 - Understand various sources of chemicals in the environment
 - ° Allay fears for the unknown