
Variable Volume Chamber Cannon (V²C²)

United Defense

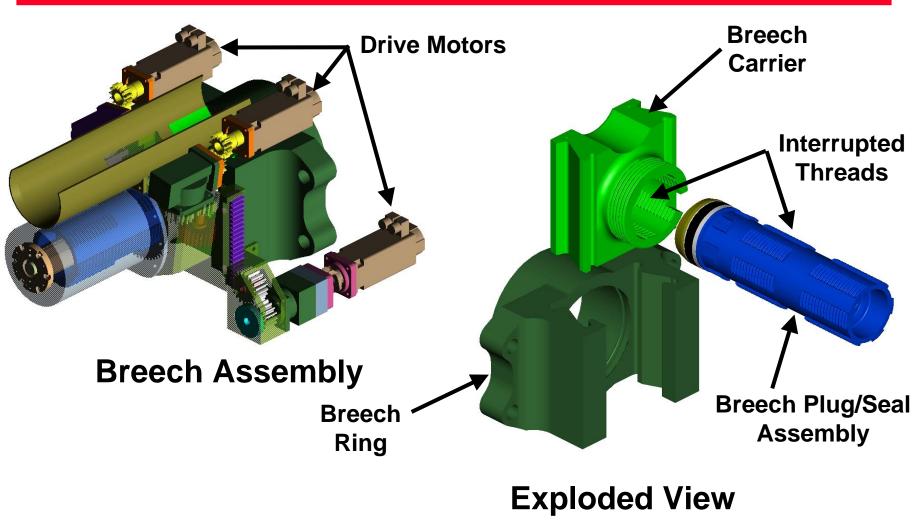
June 14 - 16, 2004

- Internal Research & Development Program began March 2003
- V²C² Program Objectives ...Identify & Develop an Innovative Technology that Will Reduce Development Costs and Risk Associated with Fielding New 105mm Artillery:
 - Must Use Adaptations of Proven Gun Technology (keep it low risk)
 - Must Use a Current Fielded Propellant (to achieve significant cost and logistics benefits)
 - Must Optimize Integrated Armament-Ammunition Performance
 Thus enabling:
 - Reduced Logistics Tail, Support, & Cost
 - Reductions in Overall System Weight

• Development Team:

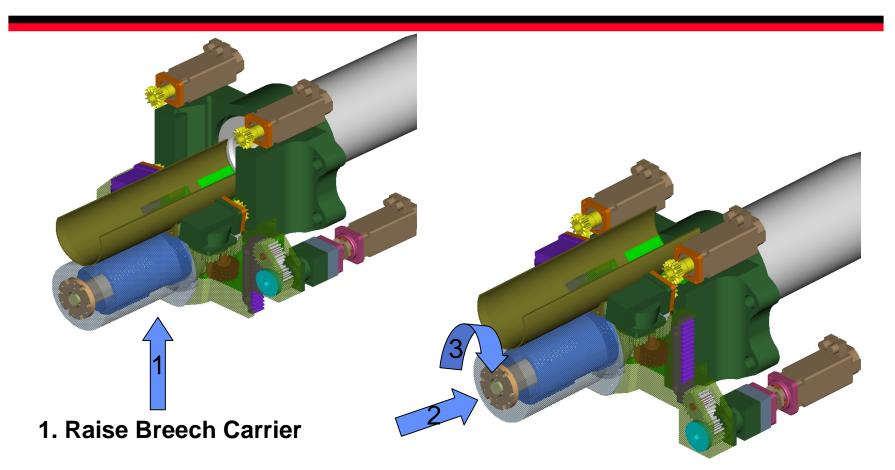
- United Defense: System Design; Variable Volume Design, Seal Design, Integration, Test Projectile Fabrication, Project Lead
- U.S. Army ARDEC: Test Projectile Design, Laser Igniter, Internal Ballistics Analysis, Structural Component Design (Benet Labs)
- U.S. Army ARL: NGEN Internal Ballistic 2-D Code dP Analysis
- U.S. Army Watervliet Arsenal: Gun Tube and Breech Fabrication

Contractual Arrangement


- All Work Conducted Under a Government/Contractor
 Cooperative Research and Development Agreement (CRADA)
- Integrated Team Approach with Work Split Between
 Organizations Based Upon Areas of Expertise to Leverage
 Strengths

- Variable Volume Chamber Cannon (V²C²) Patent Pending
- Fully-Automated 105mm, 62-caliber Cannon
- Utilizes Propellant (M231 & M232) MACS Common to 155mm Artillery
- Fires Existing Projectiles/Fuzes
- Extended 105mm Range (>30km assisted/24km unassisted)
- Estimated weight of Fully Automated Cannon ~ 2100 lb

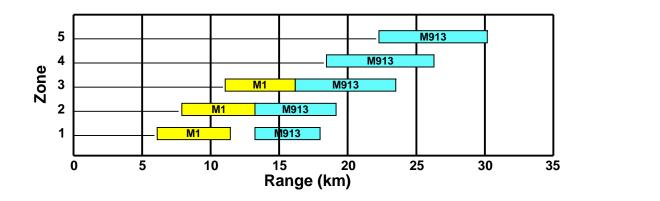
V²C² Breech Configuration


United Defense

(structural components)

V²C² Breech Operation

United Defense



2. Translate Breech Plug Assembly into Chamber to Set Chamber Volume

3. Rotate Breech Plug to Lock

V²C² Zoning Solution & Ballistics

Zone	Charge Solution		Chamber Volume (in ³)	Peak Breech Pressure (psi)	Muzzle Velocity (M/sec)	M913 Max Range (km)
5	3 – M232		800	45,000	975	30.1
4	2 – M232		500	38,000	830	26.3
3	2 – M232		800	22,700	775	23.3
2	1 – M231		500	27,000	560	18.8
1	1 – M231		800	16,400	505	17.6

7

V²C² Proof Of Principle (P.O.P.) System

P.O.P. Cannon Test Stand P.O.P. Cannon Design **Plug Drive Housing** Variable Volume Plug **Crusader Laser Igniter** (Repackaged) M297 Breech Block (Modified) M297 Breech Ring V²C² Cannon Installed in Firing Position **Crusader Raise/Lower Mechanism**

- P.O.P. Cannon Firing, total of 164 shots
 - Demonstrated acceptable internal ballistics under all conditions of propellant conditioning, zones, and charge placement.
 - Demonstrated muzzle velocity repeatability under all conditions
 - Breech seal performance has been exceptional
- Breech Drive Brass Board Checkout
 - Completed several operational tests to prove out breech automation
 - Currently conducting 20,000 cycle durability test
- Dual Axis Make-Break Motor Drive Brass Board
 - Two competing designs fabricated for testing
 - Risk mitigation testing of both designs complete

- Muzzle Velocity has been Demonstrated that will Result in 30 km Range with M913 RAP or Denel Igala Family
 - Recent Zone 6 firings with 700 c.i. Chamber provided additional MV to propel Denel projectiles to excess of 30km with same propellant charge as Zone 5 and very low negative dPs
- All Pressures Waves are Within Acceptable Limits
 - Current MACS charge qualification allows up to 6,000 psi negative pressure differential as passing, pressure between -6,000 and -10,000 requires review
 - The V2C2 Cannon has been tested with conditioned propellant at -54 C, ambient, and 63C, and all combinations of charge placement
 - Mean differential pressure measured is -1,450 psi, worst case is -5,800 psi
- Muzzle Velocity Repeatability
 - MV repeatability tests almost complete, data to be fully analyzed after completion of remaining 21 shots in late June
 - Thus far the 1 Sigma deviations range from 2 to 9 m/s
 - For Comparison the 155mm Crusader 1 Sigma MV variations ranged from 3 to 20 m/s

- Lightest Weight Long Range 105mm Cannon in the World
 - Flattened pressure/travel curve yields muzzle velocity at optimized chamber pressure
 - Higher muzzle velocity with similar chamber pressures as current M119
 - Objective design incorporates UDLP improved high strength gun steel currently being used in large caliber Navy guns
 - Fully automated version expected to weigh approximately 2100 lb (952 kg)
- Logistics benefits in using same propellant as all current U.S. fielded 155 Artillery
 - Eliminates the need to fund development of a propellant for a newly fielded 105mm cannon
 - Only one propellant to procure, stockpile, deploy, and move around the battle field to supply both 105mm and 155mm artillery
 - On average requires less ammunition weight to fire missions currently being fired by current M119 towed artillery

- Performance
 - Designed to fire at 10 rounds per minute
 - Designed to sustain 10 rounds per minute for 92 rounds with chamber spray cooling system similar to that in FCS NLOS-C SPH
 - Has extended range (30 km) and thus extended mission capability over current U.S. semi-fixed 105mm ammunition
 - Fires current inventory of 105mm projectiles to velocities and ranges consistent with their current use
 - Unassisted projectiles require the addition of an obturator (simple field modification)
 - Rocket assisted projectiles (M913) may require new rotating bands but low inventory makes it easy to produce new inventory with improved bands as stock is replaced
 - Projectile modifications required are the same as that required by any long range cannon
 - Fires Denel Igala family of projectiles to full design capability

- Complete Test Firings... ~ 45 Additional Shots
 - Objective ... Refine various design parameters to mature design
 - Focus areas include MV repeatability, seal optimization, firing of legacy projectiles, evaluation of residue affects to support design of automated system
 - Estimated Completion ... July 2004
- Brass Board Test Stand Evaluation of Breech Drive
 - Complete durability testing
- Make/Break Breech Drive Brass Board Testing
 - Validate performance of dual axis make/break connectors
- Design of Next Generation Automated Cannon
 - Develop TDP for TRL 6 and 7 prototype assessment
- Design of Feed System for Rate-of-Fire Evaluation
 - To support TRL 6 and 7 prototype assessment
- Fabrication and Firing of Fully Automated Cannon

- V²C² Technical Feasibility Demonstrated ...TRL 5
- Successfully proven the use of 155 MACS Propellant and current inventory 105mm Projectiles
- Expected to offer significant reductions in logistics and manpower burdens
- Designed to integrate into an 18 to 20 ton weight class vehicle
- Risks identified and on path to mitigation
- TRL 6 Configuration can be ready for firings in early 2005
- Excellent example of ARDEC-Industry cooperative design effort