

US ARMY Ultralight Laser Designator (ULD) Development

16 June 2004

John E. Nettleton US ARMY CECOM RDEC NVESD 10221 Burbeck Road Suite 430 Fort Belvoir, VA 22060

PH: 703-704-1704 FX: 703-704-2066 EM: john.nettleton@nvl.army.mil James H. Burton MTC SUPPORT TO PM SENSORS & LASERS 10170 Beach Road Fort Belvoir, VA 22060

PH: 703-704-2543 FX: 703-704-3449 EM: james.burton@nvl.army.mil

Answer:

Current US Army fielded laser designator systems are too heavy.

- G/VLLD ~ 61 pounds
- LLDR ~ 38 pounds (includes thermal sight)
- SOFLAM ~ 27 pounds

Having to carry a current US Army fielded laser system **impairs the combat effectiveness** of the soldier.

A lighter laser designator system allows the soldier to **increase his load in other areas** such as more munitions, water, food, etc.

A lighter laser designator system **enhances the soldiers mobility** and **reduces his fatigue**.

How do you reduce the weight of a Laser Designator system?

Answer: The ULD approach is to

First: Determine what the REAL requirements for laser designation for the mission are (energy, beam divergence, etc..).

Second: Develop a more efficient, simplified, athermal laser cavity.

Third: Incorporate system performance improvements such as optimum spot sizing and beam stabilization.

NOTE: The First and Third steps of the ULD approach are contained in a separate presentation.

What is an efficient, simplified, athermal Laser Cavity?

Answer:

The **TIR** (Total Internal Reflection) Solid State Laser is an efficient, simplified, athermal laser cavity design being developed at the US Army Night Vision & Electronic Sensors Directorate, Fort Belvoir, VA.

Why TIR Laser Cavity Design?

Answer:

-Simplified coupling of **end pump** laser diode - **no lensing** of diodes.

-Athermal laser cavity design requires no cooling or heating

of pump diodes over mil-spec temperature range

-No electrical load for thermal management

-No mechanical load for thermal management

-High efficiency (electrical to optical)

- -Lower electrical power requirements
- -Reduction in number of pump diode packages (1, 10/12-bar array)
- -Reduction in size and weight of electronic drivers
- -Utilize Monoblock technology

-Small, Compact package

Total Internal Reflection (TIR) Solid State Laser Diode End-Pumped Crystal

Top view of 1 um florescence in TIR solid state laser diode end-pumped laser crystal

Making a Designator... Specs NOT Well Understood

-Energy per pulse
-Target Reflectivity
-Atmospherics
-Laser Pulse Width
-Beam Divergence
-Aperture Size
-Target Size

$$Prec = \frac{Ptx \ e^{(-\alpha \ Rtx)} \ \rho \ e^{(-\alpha \ Rrx)}}{\pi \ Rrx^2} \frac{Arx \ Topt}{Arx \ Topt}$$

Prec = Received Power

Ptx = Transmitted Power

 α = Atmospheric extinction coefficient

Rtx = Range from transmitter to target

Rrx = Range from receiver to target

 $\rho = Reflectivity of target$

Arx = Effective Area of the receiver optics

Topt = Transmission of the receiver optical system

* Beam does not overspill the target.

The amount of energy required drives system power, size and weight.

Specifically: More energy out means more energy in, resulting in larger capacitors, batteries and resonator.

Past Standard G/VLLD (1970/80s): ~120 mJ

Past Standard MULE (1980s): ~100 mJ

Current Standard SOFLAM & LLDR: 80 mJ

Future ULD: ~ 40-60 mJ (Emerging results of Modeling, Simulation and Field/Lab testing) US ARMY RDECOM CERDEC NVESD

Typical System Dependence on Laser Output Power

Variable Energy Transmission - Vary output energy of next pulse based on Range to target (designator & seeker) and Quality of returned signal.

-Conserves Battery and decreases Thermal Loading.

Improvement of performance for Short Range Targets

 Minimize effects of overfill, splash, port scatter, and seeker blinding

 Variable Laser Energy Transmitted

Range (KM)

US ARMY RDECOM CERDEC NVESD

Reflectivity Data

Bradley Fighting Vehicle (muddy)

Brown = 0.228 Tan = 0.452 Black = 0.123 Green = 0.527 Skirt = 0.385

Average of reflectivity values = 0.343

Armored Personnel Carrier (Uniform Light Green)

Top = 0.61 Bottom = 0.595 Skirt = 0.54

Average of reflectivity values = 0.582

HMMWV (clean)

Brown = 0.152 Black = 0.062 Green = 0.322 Light Green = 0.488

Door = 0.441 Tire = 0.06 Window Plastic = 0.05

Average of reflectivity values = 0.225

Typical System Dependence on Atmospheric Conditions (Visibility)

Laser Pulse Width ALSPES Results Sensitivity Analysis

The Beam Divergence/Beam Quality drives the size of the optics. The worse the beam quality the larger the telescope/optics for the required divergence. Another factor affecting Beam Divergence/Beam Quality is the selected lasing material. The Beam Divergence required will vary with Operational Range and Target Size.

Current LLDR Specs < 200 micro-radians

EXAMPLES: Reduced LDWSS Results - SHORT RANGE - (Optimum Spot):										
R-D(km)	R-M(km)	Vis(1/km)	Enrgy(mJ)	Bm Div*(mR)	Jit*(mR)	Phit-K				
3	3	23/10/3	25 - 100	0.125	0.10	89%				
6677	6677	6677	6699	0.25	0.10	91%				
· · · · ·	6677	،	6677	0.50	0.10	98%				
2	3	23/10	25 - 100	0.125	0.20	73%				
6677	6699	6677	6699	0.25	0.20	78%				
6677	6677	6699	6677	0.50	0.20	80%				
3	5	23	25 - 100	0.125	0.10	90%				
6677	6679	6699	6699	0.25	0.10	96%				
"	(())	6677	"	0.50	0.10	100%				
3	5	10	25 - 100	0.125	0.10	90%				
6677	6699	6677	6677	0.25	0.10	95%				
· · · · ·	6677	6677	6677	0.50	0.10	99%				
As Beam Divergence INCREASED Phit INCREASED Given BD * Jit << Target Size										

Ultra-Lightweight Laser Designator

Laser Designation Weapon System Simulation (LDWSS)

Laser Designator Energy is not key factor in achieving good Phit.

Reduced LDWSS Results:												
R-D(km)	R-M(km)	Vis(1/km)	Enrgy(mJ)	Bm Div*(mR)	Jit*(mR)	Phit-K	Phit-C					
1 - 4	3 - 5	23/10/3	25 – 100	0.125 - 0.5	0.05	100%	100%					
"	6699	6699	6699	 ,	0.10	>90%	>95%					
6699	6699	6699	6699	 ,	0.20	>50%	>90%					
6699	6677	667 7	6697	,	0.40	<50%	<90%					

****** Containing the laser designator beam within target is TOP PRIORITY!!

Note: Beam Divergence and Jitter angles are 1/2 angle values in LDWSS

Operational Requirement – Assumed Requirements

Values based on existing LLDR ORD and "Missing Information"

Proposed Target: Designation Range (tank frontal)- 3 KM Designation Range (Building)- 6 KM

1.1.1.1.1 Normal Target.

The target is defined as a NATO Standard tank target having a frontal cross-section of 2.3×2.3 meters, and a side cross-section of 2.3×6.4 meters. The target is considered to be normal to the laser beam and to have a reflectance of 10% at the laser wavelength. Moving targets are defined as having a crossing speed of 40 kph.

The Best Technology in the World is Useless without Proper TRAINING and IMPLEMENTATION

TRAINING REQUIREMENTS

-System Training: Train on operation and function of system (Firing Range)

-Operational Training: Train on utilization of system in force-on-force engagements (Tactical Engagement Simulation)

-Good Technology but Poor Implementation Leads to User Not using the system. Example: Copperhead, Laser Designated Round For FA

-Communications: Very IMPORTANT, especially for remote designation

-Improved Tactical Integration: The Laser Designation system must make sense to the User and fit into the tactical scheme/operating procedures.

SUMMARY: Laser Designation Must Be Implemented As A System

-How is the system working now? -Is the system successful?

-How can technology improve the system? -Laser technology, communications, PDA's,...

-How can the system evolve to be improved? -Is the system understood?

Early ULD Brassboard - Technology Success

