

Synergy Beyond Expectations – Integrating Engineering Processes

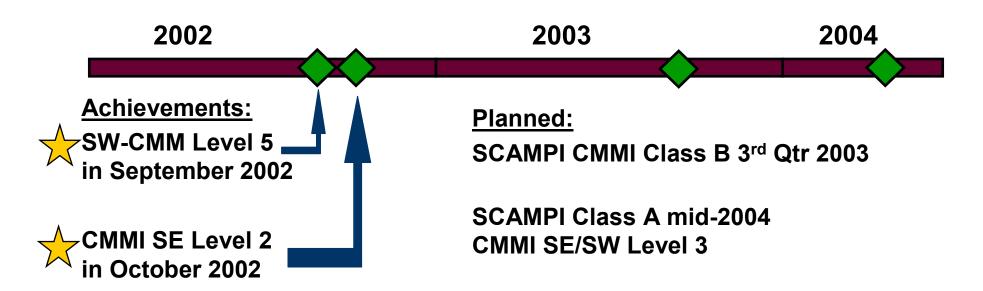
NDIA – CMMI Technology Conference & User Group Sally Cheung, Jim Cotterman & Dennis Laiola

November 17, 2004

Our Organization Raytheon Fullerton Operations (RFO)

Network Centric Systems, Fullerton, CA

 Achieved CMMI SW Level 5 in December 2003


Achieved SW-CMM Level 5 twice before: 9/2002 and 10/1998

 Achieved CMMI SE Level 3 in December 2003

CMMI SE Level 2 in 10/2002

Background – Past Achievements and 2003 Plans

Background – Management Changes to 2003 Plans

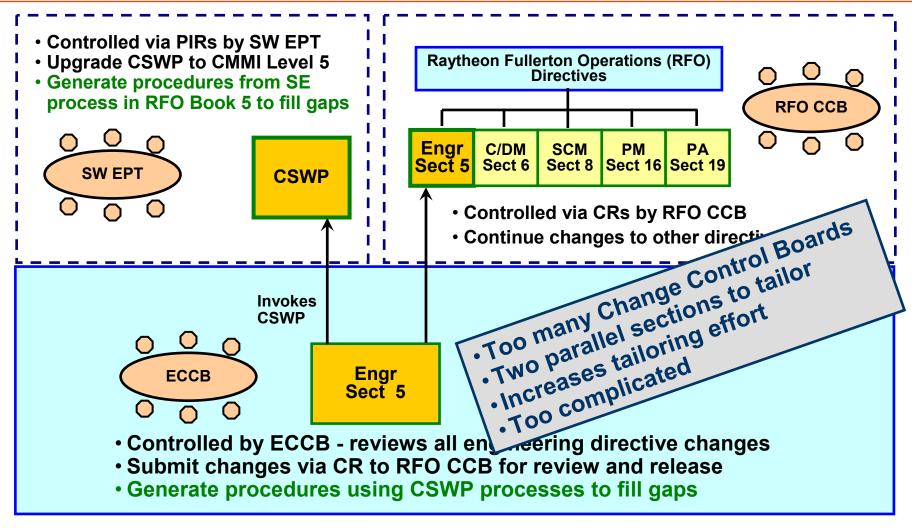
2002 2003 2004

Achievements:

SW-CMM Level 5 in September 2002

CMMI SE Level 2 in October 2002

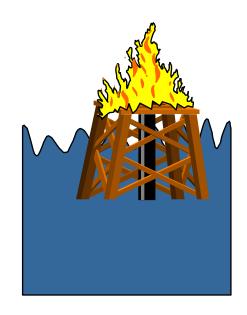
SCAMPI CMMI Class B 3rd Qtr SCAMPI Class A mid-2004 CMMI SE/SW Level 3


Management wants SW Level 5 & SE Level 3 in 2003

- Keep up with Competitors
- Budget reduced by 18%
- Higher SW maturity level
- Shorter schedule

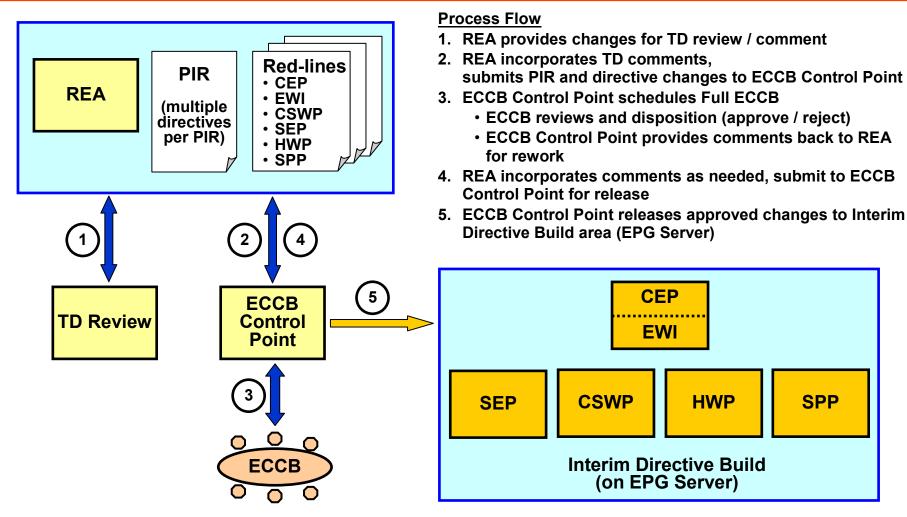
Starting Point => RFO Directives

Section	Functional Area
0	General Management
1	Facilities
2	Law
3	Human Resources
4	Finance
5	Engineering
6	Configuration/Data Management
7	Reserved
8	Supply Chain Management
9	Property
10	Contracts
11	Security
12	Business Development
13	Reserved
14	Reserved
15	Reserved
16	Program Management
17	Reserved
18	Information Technology
19	Quality Assurance

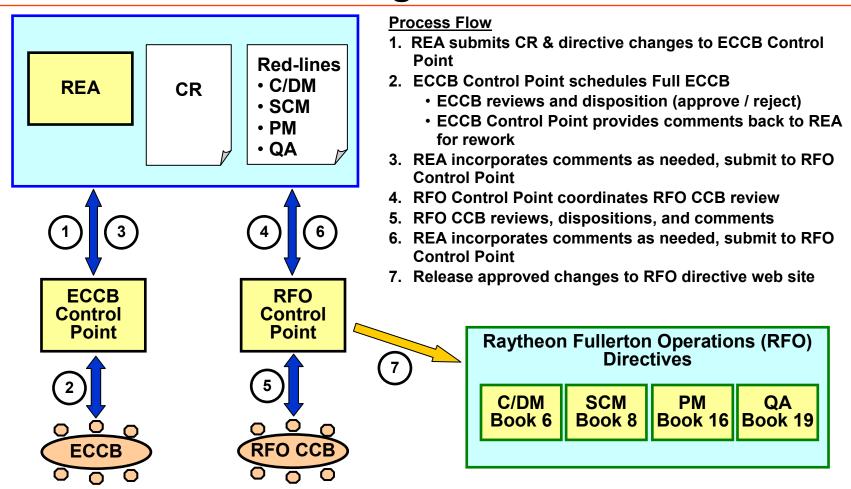

Initial Approach Use Existing Directive – Parallel Structures

ECCB – Engr Change Control Board PIR – Process Improvement Request SW EPT – Software Engr Process Team

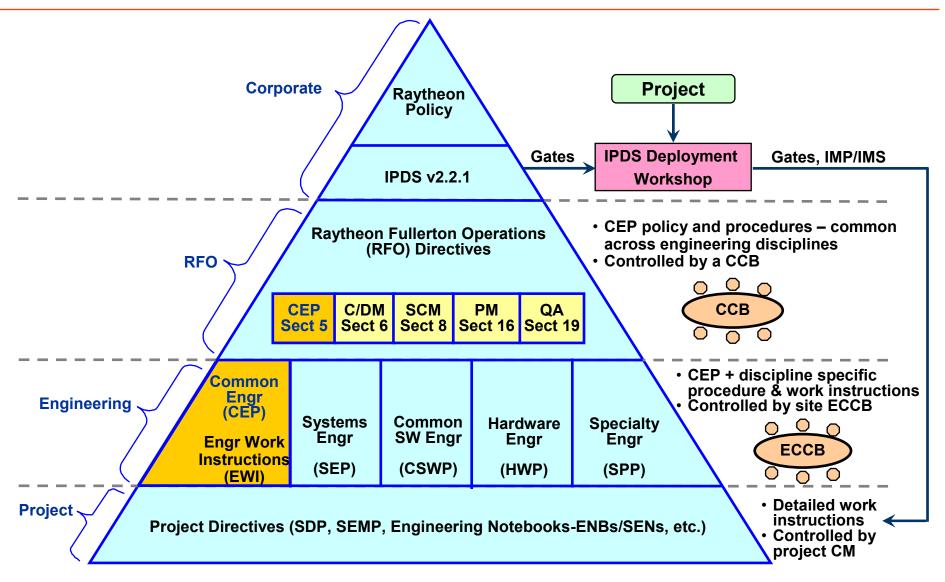
Burning Platform - Need to Re-architect Directives


- Cannot add procedures in logical and related groupings - current organization does not support it
- Too many CCBs
 - RFO CCB RFO Directives
 - ECCB RFO Engineering Directives
 - SW EPT CSWPs
- Parallel approach confusing and complicating
 - Common procedures in CSWP, RFO and SE confusing
 - Confusing for Process Engineers & Projects
 - If directive structure is confusing, tailoring will be confusing and take extra effort

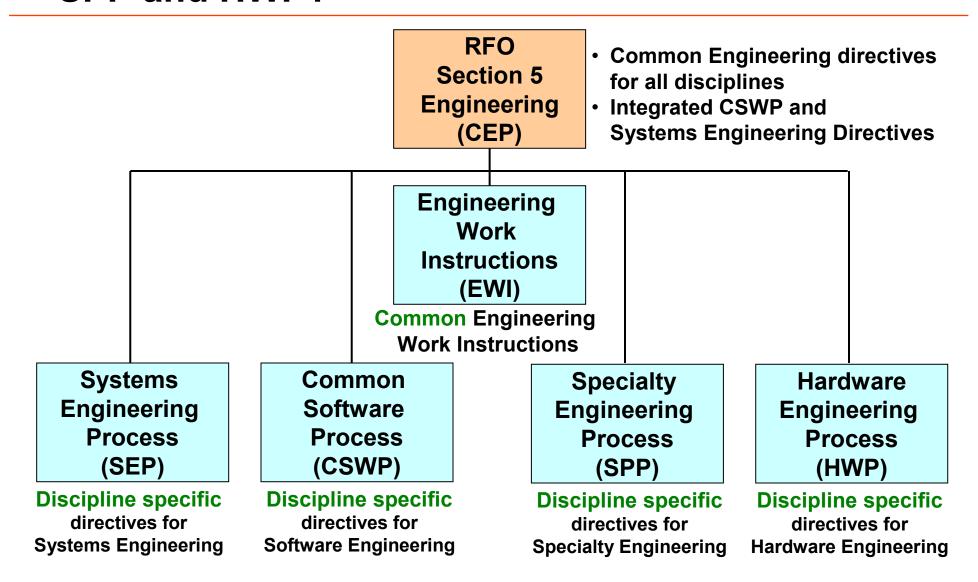
Common Engineering Process (CEP) Architecture - Transition State



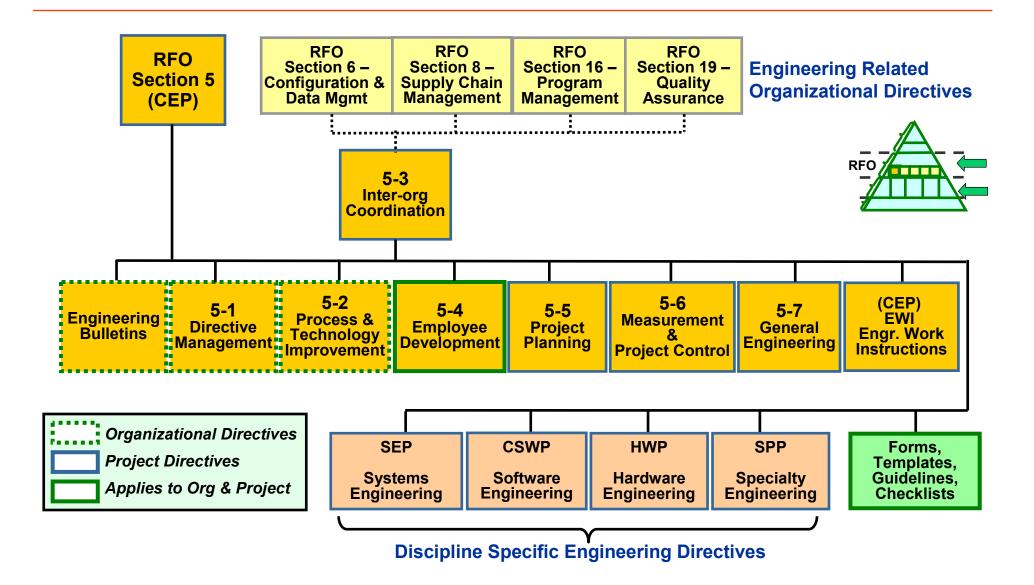
Engineering Processes Transition State - Change Flow


Changes to directives via PIR & controlled by ECCB

C/DM, SCM, PM, and PA Processes Transition State - Change Flow (CMMI related changes)



Continue changes to other directives via RFO CRs
Controlled by RFO CCB


Common Engineering Process (CEP) Architecture – Final State in 2003

What are the CEP, EWI, SEP, CSWP, SPP and HWP?

CEP Architecture

Benefits of Integrating Engineering Processes (1)

Engineering Directive Overview

			Mod	Mod		Promote	No
	Total	Mod RFO	CSWP	Other	New	=> RFO	Change
Total CEP Procedures	48	38	22	3	14		
Total CEP WI, Prod Stds, Templates, Non-Dir Docs	47	7	35	5	13		
Total CSWP Practices and Procedures	158		121			63	48
Total SEP procedures and Wis	7	4	0	0	3		
Total SPP procedures and WIs	5	5	0	0	0		
Total HWP procedures and WIs	10	10	0	0	0		
TOTAL	275	64	178	8	30	63	48

Common engineering processes enabled (42 MMs savings):

- Decreased total number of directives from parallel structure
- More common process than unique
- Minimized need to create discipline specific procedures for SE and SW
- Decreased the need to create new procedures
- Modification of Common SW Processes is higher due to the use of pointers to the new common directives
- Reuse of SE directives not included in above numbers

Reduced Cost & Schedule - Met Management Goal

Benefits of Integrating Engineering Processes (2)

Opportunity Realized in 2003 - savings of \$259K

- Appraisal planning, preparation and conduct efforts have been worked jointly with good synergism
- Joint SE/SW peer reviews of Gap analysis and joint affinitization of gaps reduced the effort of developing the Gap analysis worksheets
- SE & SW Synergy resulted in less effort than planned for preparation of training materials due to joint training packages
- FUTURE: Potential additional synergy in remaining training conduct and project plans and procedures updates

2004 and beyond

- Directive maintenance costs 1 set of common directive rather than multiple directives for each discipline
- Training
- Projects plans and procedures
- Appraisal costs

SCAMPI Achievements Rating Profile - Software

	GP							SP																		
PA	2.1	3.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	3.2	2.9	2.10														
REQM													1.1	1.2	1.3	1.4	1.5									
PP													1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	2.5	2.6	2.7	3.1	3.2	3.3
PMC													1.1	1.2	1.3	1.4	1.5	1.6	1.7	2.1	2.2	2.3				
SAM													1.1	1.2	1.3	2.1	2.2	2.3	2.4							
M&A													1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4						
PPQA													1.1	1.2	2.1	2.2										
CM													1.1	1.2	1.3	2.1	2.2	3.1	3.2							
RD													1.1	1.2	2.1	2.2	2.3	3.1	3.2	3.3	3.4	3.5				
TS													1.1	1.2	1.3	2.1	2.2	2.3	2.4	3.1	3.2					
PI													1.1	1.2	1.3	2.1	2.2	3.1	3.2	3.3	3.4					
VER													1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2						
VAL													1.1	1.2	1.3	2.1	2.2									
OPF													1.1	1.2	1.3	2.1	2.2	2.3	2.4							
OPD													1.1	1.2	1.3	1.4	1.5									
ОГ													1.1	1.2	1.3	1.4	2.1	2.2	2.3							
IPM													1.1	1.2	1.3	1.4	1.5	2.1	2.2	2.3						
RSKM													1.1	1.2	1.3	2.1	2.2	3.1	3.2							
DAR													1.1	1.2	1.3	1.4	1.5	1.6								
OPP													1.1	1.2	1.3	1.4	1.5									
QPM													1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4						
OID													1.1	1.2	1.3	1.4	2.1	2.2	2.3							
CAR													1.1	1.2	2.1	2.2	2.3									

SE/SWRating Legend

SEI STITULING ELEGANA	
NAME	COLOR
Fully Implemented	
Largely Implemented	
Partially Implemented	
Not Implemented	

SCAMPI AchievementsRating Profile - Systems

	GP							SP																		
PA	2.1	3.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	3.2	2.9	2.10														
REQM													1.1	1.2	1.3	1.4	1.5									
PP													1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	2.5	2.6	2.7	3.1	3.2	3.3
PMC													1.1	1.2	1.3	1.4	1.5	1.6	1.7	2.1	2.2	2.3				
SAM													1.1	1.2	1.3	2.1	2.2	2.3	2.4							
M&A													1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4						
PPQA													1.1	1.2	2.1	2.2										
CM													1.1	1.2	1.3	2.1	2.2	3.1	3.2							
RD													1.1	1.2	2.1	2.2	2.3	3.1	3.2	3.3	3.4	3.5				
TS													1.1	1.2	1.3	2.1	2.2	2.3	2.4	3.1	3.2					
PI													1.1	1.2	1.3	2.1	2.2	3.1	3.2	3.3	3.4					
VER													1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2						
VAL													1.1	1.2	1.3	2.1	2.2									
OPF													1.1	1.2	1.3	2.1	2.2	2.3	2.4							<u> </u>
OPD													1.1	1.2	1.3	1.4	1.5									
OT													1.1	1.2	1.3	1.4	2.1	2.2	2.3							
IPM													1.1	1.2	1.3	1.4	1.5	2.1	2.2	2.3						
RSKM													1.1	1.2	1.3	2.1	2.2	3.1	3.2							
DAR													1.1	1.2	1.3	1.4	1.5	1.6								
OPP													1.1	1.2	1.3	1.4	1.5									<u> </u>
QPM													1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4						
OID													1.1	1.2	1.3	1.4	2.1	2.2	2.3							
CAR													1.1	1.2	2.1	2.2	2.3									

SE/SW Rating Legend	
NAME	COLOR
Fully Implemented	
Largely Implemented	
Partially Implemented	
Not Implemented	

We exceeded our goal of CMMI SE level 3, we were so close to achieving the level 5!

Results of leveraging from engineering disciplines with higher maturity

Enablers to an Integrated Common Engineering Directive System

- A single EPG to manage Engineering processes
- On projects, engineering leadership headed by a program engineer (PE) responsible for all engineering activities
- All engineering personnel under one Engineering Director at the site vs. separate SE, HW and SW functional organizations
- Strong sponsorship from senior management regarding the "I" in CMMI (not just engineering but enterprise level as well)
- An integrated Quality Assurance organization for all engineering activities
- SE, HW, Specialty and SW use the same process model, CMMI
- Experienced engineering process personnel, with experience on projects at the site
- Utilize EPG liaisons to projects
 - Both SE & SW (HW as required) to provide depth of knowledge and greater level of support
 - Have Team-of-Four meetings to assist process deployment & measures

Lessons Learned

- Process management needs to be normalized across Engineering
- Once started, synergy exceeded expectations, building off each previous one
- Benefit of cross-training Engineering processes
- CMMI training is crucial to success
- CMMI Appraisal experience significantly contributed to the process improvement effort
- R6s baseline was an excellent forum for team building & establishing a practical tactical approach to achieving aggressive strategic objectives