

A Comprehensive Survey of Risk Sources and Categories

NDIA 4th Annual CMMI Technology Conference & User Group

CYBERSPACE

SPACE

OUTER

November 17, 2004

Warren Scheinin Systems Engineer Northrop Grumman Corporation

NORTHROP GRUMMAN

The Source of This Investigation

SP 1.1 Determine Risk Sources and Categories

- Identification of risk sources provides a basis for systematically examining changing situations over time to uncover circumstances that impact the ability of the project to meet its objectives. Risk sources are both internal and external to the project. As the project progresses, additional sources of risk may be identified.
- Establishing categories for risks provides a mechanism for collecting and organizing risks as well as ensuring appropriate scrutiny and management attention for those risks that can have more serious consequences on meeting project objectives.

CMMISM for Systems Engineering/Software Engineering, Version 1.1, Staged Representation (CMMI-SE/SW, V1.1, Staged) *Technical Report* CMU/SEI-2002-TR-002

NORTHROP GRUMMAN

A Source by Any Other Name

Lots of ways to slice and dice it

- Risk Factors, Drivers, Type, Attributes
 - Cost (C)
 - Schedule (S)
 - Technical [performance] (T)
 - Process Capability
 - Deployability
 - Support

SPM 924 4.4 Analyze Risks

020 Determine risk sources and categories. {CMMI L3 RM SP 1.1} {PRM-924-110}

Note: Risk **categories** reflect the **bins**/groups for collecting and organizing risks, such as lifecycle phase, product type, responsible organization, internal vs external risks, etc.

- Risk Sources = Risk (common) Areas (fundamental drivers), Elements
 - Requirements
 - Vendors, etc.

Taxonomy: A classification system for assigning elements to specially named categories based on shared characteristics

NORTHROP GRUMMAN

Characteristics of Risk Sources

- Contains one or more fundamental drivers that cause risks events to arise within a project or organization
- Provides risk criteria specific to a project
 - Programmatic risks
 - Technology risks
- Guides those doing the risk candidate identification to areas most likely to produce risk events
 - Allows subject matter experts to concentrate on their areas of expertise
- Adds direction to the risk candidate identification activities by maximizing coverage

NORTHROP GRUMMAN

Characteristics of Risk Categories

- Designates risks identified by common attributers
 - Product type
 - Lifecycle phase
 - Responsible organization
 - Often useful to associate risks with the IPT they are assigned to
 - Internal versus external source
- Provides groupings that are more easily managed
 - Tools like Risk Status Charts commonly have a set of characteristics they capture for each risk
 - Highlights interactions between associated risks
 - Helps in the consolidation of activities in the risk handling plans.

NORTHROP GRUMMAN

6

Scope of This Presentation Within the Organization

 Organization – An administrative structure in which people collectively manage one or more projects as a whole, and whose projects share a senior manager and operate under the same policies.

NORTHROP GRUMMAN

Why Not Higher?

Holmes 2002 Organizational Risk Categories

- Credit
- Country and transfer
- Interest rate
- Strategic and business
- Program and project
- Liquidity
- Foreign exchange
- Reputation
- Financial (fraud)
- Legal
- Regulatory

Revised Boehm Top Ten Sources of Risk 1991

DEFINING THE FUTURE

- Personnel Shortfalls
- Unrealistic schedules and budgets
- Developing the wrong software functions

NORTHROP GRUMMAN

- Developing wrong user interface
- Goldplating
- Continuing stream of requirements changes
- Shortfalls in externally furnished components
- Shortfalls in internally performed tasks
- Real-time performance shortfalls
- Straining computer science capabilities

NORTHROP GRUMMAN

opyright 2004 Northrop Grumman Corporation

9

Risk Identification - *SEI Risk Taxonomy 1993*

- Risks are categorized by

 class
 element
 attribute

 Risk taxonomy is intended for software, but
 - can be adapted for Systems Engineering
- Use
 - —As a check list
 - —To promote deeper thinking
 - Basis of interviews
 - —Distribute to SMEs

. Product Engineering	B. Development Environment	C. Program Constraints
 Requirements a. Stability b. Completeness c. Clarity d. Validity e. Feasibility f. Precedent g. Scale Design a. Functionality b. Difficulty c. Interfaces d. Performance e. Testability f. Hardware g. Non-Developmental Software Code and Unit Test a. Feasibility b. Testing c. Coding/Implementation Integration and Test a. Environment b. Product c. System Engineering Specialties a. Maintainability b. Reliability c. Safety d. Security e. Human Factors 	 Development Process a. Formality b. Suitability c. Process Control d. Familiarity e. Product Control Development System a. Capacity b. Suitability c. Usability d. Familiarity e. Reliability f. System Support g. Deliverability Management Process a. Planning b. Project Organization c. Management Experience d. Program Interfaces Management Methods a. Monitoring b. Personnel Management c. Quality Assurance d. Configuration Management Work Environment a. Quality Attitude b. Cooperation c. Communication d. Morale 	 Resources a. Schedule b. Staff c. Budget d. Facilities Contract a. Type of Contract b. Restrictions c. Dependencies Program Interfaces a. Customer b. Associate Contractors c. Subcontractors d. Prime Contractor e. Corporate Management f. Vendors g. Politics

DoD RISK MANAGEMENT GUIDE, 2003

SPACE DEFINING THE FUTURE

Figure 2-2. Critical Process Areas and Templates

10

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

DoD Acquisition Risk Management Guide, 2003

DEFINING THE FUTURE

- Threat
- Requirements
- Design
- Test
- Evaluation
- Simulation
- Technology
- Logistics

- Production
- Facilities
- Concurrency
- Capability
- Developer
- Cost/Funding
- Schedule
- Management

• Design and Engineering

NORTHROP GRUMMAN

- Logistics
- Testing
- Manufacturing
- Concurrency
 - -Program schedule

NORTHROP GRUMMAN

pyright 2004 Northrop Grumman Corporation

12

Sage 1992 annotated by Buttigieg 2004

- Requirements identification and specification
 - Ambiguity
 - Completeness
 - Traceability
- Preliminary conceptual design
 - Ambiguity Structur
 - Completeness

- Structure/architecture

- Understandability

- Coupling

- Volatility

- Logical design and system architecture
- Detailed design, production, and test
 - Highly experienced programmers
 - Standard design formats Metrics
- Operational Implementation ready for
- Evaluation and Modification
 - Well defined guidelines Measurability
- Operational deployment final acceptance

- Change management - Training

NORTHROP GRUMMAN

13

Chittister, 1993

Functional decomposition

- Requirements
- Product
- Process
- People
- Management
- Environment
- System development

Source-based decomposition

- Hardware
- Software
- Organization
- Human

Temporal decomposition

— Phases of software development

NORTHROP GRUMMAN

opyright 2004 Northrop Grumman Corporation

14

Chittister, 2000

Acquisition

- Proposal
- Changes
- Reviews
- Acceptance

S/W Development

- Requirements
- Specifications
- Architecture
- Process
- Product
- Support systems for integration
- People
- Management_
- System development

Environment

- Hardware
- Software
- Organization
- External
- Human

Temporal

- Requirements
- Architectural Design •
- Initial Operating Capability
- Final Operating Capability
- Maintenance
- Upgrade and growth

Quality

- Technical perforamce
- Cost overrun
- Schedule delay

Technology

- Type
- Extent of Use

Leadership

- Personal trustworthiness
- Interpersonal trust
- Management empowerment
- Institutional alignment
 - Communication ability
- Technical competence

Copyright 2004 Northrop Grumman Corporation

15

NORTHROP GRUMMAN

Sherer, 1995

 Technical Tasks **Procedures** Organizational **Poor communication Structure** Environmental **Rapid changes External relationships Developers** Users

NORTHROP GRUMMAN

opyright 2004 Northrop Grumman Corporation

16

Keil et al, 1998

- Top management commitment
- User commitment
- Requirements misunderstood
- Lack of user involvement
- Managing end user expectations
- Changing scope/objections
- Project personnel knowledge/skills
- Requirements creep
- New technology
- Insufficient/inappropriate staffing
- User department conflicts

NORTHROP GRUMMAN

pyright 2004 Northrop Grumman Corporation

17

Ropponen and Lyytinen, 2000 survey of project managers

- Schedule
- System functionality
- Subcontracting
- Requirements management
- Resource usage and performance
- Personnel management

NORTHROP GRUMMAN

byright 2004 Northrop Grumman Corporation

18

Revised Standish Group 2001 Success Factors (Chaos Ten)

Application Development Projects

- Executive support
- User involvement
- Project manager
- Clear business objectives
- Scope
- Standard software infrastructure
- Firm basic requirements
- Formal methodologies
- Reliable estimates

Copyright 2004 Northrop Grumman Corporation

NORTHROP GRUMMAN

Murthi, 2002

External Risks

- Requirements
- Technology
- Business
- Political
- Resources and skills
- Deployment and support
- Integration
- Schedule
- Maintenance and enhancement
- Design

NORTHROP GRUMMAN

pyright 2004 Northrop Grumman Corporation

20

Addison and Vallabh, 2002 Project Manager Perceptions

- Misunderstood scope or objectives
- Misunderstood requirements
- User involvement
- Senior management commitment
- Wrong software functions
- Schedules unrealistic
- Budgets unrealistic
- Requirements volatility
- Knowledge/skills
- Project management methodology
- Gold plating

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

21

Now to Put Them All Together - Initial List

Category												Develop	ment Environment	
Source												Environr	nent	
Acquisition	Chittister	2000										Hz	ırdware	
Business		, 2000					Murthi	2002				Fa	cilities	
Clear business objectives								, 2002		Sta	ndish Group's 20	We	ork Environment	
Proposal	Chittieter	2000									indisii Group 5 2	Re	source usage and performant	ce
Contract	Cintuster	, 2000	SELTON	nonny 1	002				-			So	ftware	
Changes	Chittiator	2000	SEITAN	noniy, i	115							Or ganize	itional	
Daviewe	Chittiatan	, 2000		-			-	-				Or	ganization	
Accentance	Chittister	, 2000					-					Lo	gistics	
Acceptance	Chittister	, 2000				D	2000	Desta	1000			De	evelopment System	
Software Development	Cnittister	, 2000	OFLT.	1	002	Kopponen	, 2000	Boenm	, 1988	5		Ma	anagement Process	
Product Engineering	a1.1.1.1	1000	SEITaxo	nomy, I	993							Re	sources and skills	
Requirements	Chittister	, 1993	SEITaxo	onomy, I	993	-	Murthi	, 2002				Pe	rsonnel Shortfalls	
Requirements management					_	Ropponen	, 2000					Po	or communication	
Requirements							_	-			DoD Guid	Str	ructure	
Continuing stream of requirements cha	inges						_	Boehm	, 1991			Ex	ternal	
Requirements creep									Keil	et al, 1998		Ex	ternal relationships	
Goldplating							_	Boehm	, 1991				Developers	
Gold plating										Addison and	Vallabh, 2002		Users	
Specifications	Chittister	, 2000										Po	litical	
Formal methodologies										Sta	ndish Group's 20	Su	bcontracting	
Architecture	Chittister	, 2000										Sh	ortfalls in externally furnishe	ed cr
Standard software infrastructure										Sta	ndish Group's 20	Ra	nid changes	Ju ot
Developing wrong user interface								Boehm	, 1991			Hi	iman	
Process	Chittister	, 1993										Human		
Development Process		1	SEI Taxo	nomy, 1	993							Leaderst	nin	
Shortfalls in internally performed task	s			1				Boehm	1991	1		Pe	rsonal trustworthiness	
Design			SEI Taxo	nomy 1	993		Murthi	2002				Int	ernersonal trust	
Design			- DEI TUR					, 2002			DoD Guid	M	anagerial empowerment	
Detailed design					Iain	2004					DOD Guid	Ins	stitutional alignment	
Developing the wrong software function	one				Juin	, 2004		Boehm	1001			Co	mmunication ability	
Wrong software functions					-			Docimi	, 1771	Addison and	Vallabh 2002	Te	chnical competence	
Draduation/					-					/ turison unc	DoD Guid	M	anagement Methods	
Code and Unit Test			CEI Tene		002						DoD Guid	Pe	rsonnel management	
Dag duction and testing			SEITAX	monny, i	10:0	2004						Pn	oject management methodolo	σν
Trat					Jain,	, 2004					D.D.C. H	Pr	oject manager	55
lest letter							Mad	2002			DoD Guid	To	n management commitment	
Integration			OFIT		000		Murthi	, 2002				Se	nior management commitmer	nt
Integration and Test			SEI Taxo	onomy, I	993							Ev	ecutive support	n
a. Environment			SEITaxo	onomy, I	993		_					M	anagement	
b. Product			SEI Taxo	onomy, 1	993		_					La	ck of user involvement	
c. System			SEI Taxo	onomy, 1	993							Lu	er commitment	
Evaluation											DoD Guid	Us	er involvement	
Product	Chittister	, 1993					_					Ue	er involvement	
Support systems for integration	Chittister	, 2000										M	anaging and user expectation	
Temporal	Chittister	, 1993										Ch	maging chu user expectations	5
Requirements	Chittister	, 2000			Jain,	2004						M	anging scope/objections	
Firm basic requirements										Sta	ndish Group's 20	M	initized scope	tiwar
Requirements identification and speci	fication	Buttigieg	2004									Dr	sinderstood scope of object	lailt
Ambiguity		Buttigieg	2004									PIC	Ject personner know ledge/s	KIIIS
Completeness		Buttigieg	2004									NI Inc	iowiedge/skills	
Understandability		Buttigieg	2004									Ins	unicient/mappropriate stam	ng
Requirements misunderstood				1			-		Keil	et al 1998		Ourlit	er department contricts	
Misunderstood requirements									i.c.n	Addison and	Vallabh 2002	Quanty	0 1 1	
Volatility		Buttinian	2004			-			1	r autson alle	1 Tuna01, 2002	Program	Constraints	
Paquiromente volatility	-	Buugieg	2004	-	-		-	-	-	Addison	Wallabh 2002	Te	cnnical performance	
Traccobility		Duttinia	2004	-	-				-	Addison and	i vanabii, 2002	Re	sources	
I raceability	Olivie:	Duttigieg	2004						-				a. Schedule	
Architectural Design	Chittister	, 2000		-	-	D	2000	-	-				b. Staff	
System functionality		D. within	2004			Ropponen	, 2000		-					
Preliminary conceptual design		Buttigieg	2004	1		1	1							

Deve	lonman	t Environment			SEI Taxo	normy 10	203							
Envir	opmon		Chittiatar	1002	SLI TAN	Sharar	Dach	mi 2004						
LIIVII	Hardy	1979	Chittister,	1003		Sherer,	Rasn	111, 2004						
	Engilit	has	Cintuster,	1775										DeD Guid
	Work	Environment			SEI Taxo	normy 10	203							DoD Guic
	Pacou	rae usage and performance			SLI TAN	nonny, 1	115	Donnonon	2000					
	Software	ree usage and performance	Chittiatar	1002				Kopponen,	2000					
Oran	izotion		Cintuister,	1995		Charar	Dach	mi 2004						
Orga	Organ	ization	Chittistar	1003		Sherer,	Kasii	111, 2004						
	Logist	iag	Cintuster,	1775										DeD Guid
	Devel	opment System			SEI Taxo	normy 10	203							DoD Guic
	Mapor	rement Broass			SELTaxo	nomy 1	002							
	Pesou	reas and skills			SLI TANO	nonny, 1	115		Murthi	2002				
	Dersor	mel Shortfalls							with this	Boehm	1001			
	Poor	communication				Sharar	1005			Boenin	1991			
	Struct	re				Sherer	1005							
	Extern		Chittister	2000		Sherer,	1995							
	Extorn	al relationshing	Cintuster,	2000		Charar	1005							
	Extern	Davalanara				Sherer,	1995							
		Usera	_			Sherer,	1995							
	D-14	Users				Sherer,	1995		Munthi	2002				
	Politic	al						D	Murthi,	2002				
	Subco	nu'acung						Kopponen,	2000	Dealur	1001			
	Shoru:	alis in externally furnished com	iponenis			C1	1005			Boenm	1991			
	Kapid	changes	Chittinton	1002		Snerer,	1995							
T.L.	numar	1	Chituster,	1995			Deele							
Turn	in t.i.e		Chittinton	2000			Rasn	mi, 2004						
Lead	n		Chittister,	2000										
	Persor	nai trustwortniness	Chittister,	2000										
	merpe	ersonar ir ust	Childister,	2000										
	Manag	tional alignment	Chittister,	2000										
	Institu	tional alignment	Chittister,	2000										
	Comm	unication ability	Chittister,	2000										
	Techn	ical competence	Chittister,	2000	OFIT	1/	002							
	Nanag	gement Methods			SEI Taxo	nomy, 19	193	D	2000					
	Persor	nnel management						Ropponen,	2000					11.0000
	Projec	t management methodology										Addison	and Vall	abh, 2002
	Projec	t manager											Standish	Group's 2
	Top m	anagement commitment									Keil	et al, 199	8	
	Semor	management commitment										Addison	and Vall	abh, 2002
	Execu	tive support											Standish	Group's 2
	Manag	gement	_											DoD Guic
	Lack o	of user involvement									Keil	et al, 199	8	
	User c	ommitment									Keil	et al, 199	8	
	User 11	nvolvement										Addison	and Vall	abh, 2002
	User in	nvolvement											Standish	Group's 2
	Manag	ging end user expectations	_								Keil	et al, 199	8	
	Chang	ing scope/objections									Keil	et al, 199	8	
	Minim	ized scope	_										Standish	Group's 2
	Misun	derstood scope or objectives										Addison	and Vall	abh, 2002
	Projec	t personnel knowledge/skills									Keil	et al, 199	8	
	Know	ledge/skills										Addison	and Vall	abh, 2002
	Insuffi	cient/inappropriate staffing									Keil	et al, 199	8	
	User d	lepartment conflicts									Keil	et al, 199	8	
Quali	ity		Chittister,	2000										
Prog	am Cor	nstraints	_		SEI Taxo	nomy, 19	993							
	Techn	ical performance	Chittister,	2000										
	Resou	rces			SEI Taxo	nomy, 19	993							
		a. Schedule	_		SEI Taxo	nomy, 19	993							
		b. Staff			SEI Taxo	nomy, 19	993							

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

How Best to Collapse Into an Integrated list?

Some sections were easy to match up

Top management commitment	Keil et al,	1998			
Senior management commitment		Addison and Vallabh, 2002			
Executive support			Standis	h Grou	up's 2001

Schedule delay	Chittister.	, 2000				
Schedule		Ropponer	n, 2000			
Schedules unrealistic				Addison a	and Vallab	h, 2002
Schedule					DoD Guio	de, 2003
Unrealistic schedules and budgets			Boehm, 1	991		

NORTHROP GRUMMAN

oyright 2004 Northrop Grumman Corporation

23

How Best to Collapse Into an Integrated list?

• Other sections were more difficult

Requirements identification and specification				Buttigieg	2004				
		Understandability		Buttigieg	2004				
Requirements misunderstood				Keil et a	al, 199	98			
Misunderstood requirements					Addis	son and Val	labh, 20	02	
Product Engineering						SEI Taxono	omy, 199	93	
Requirements						SEI Taxono	omy, 199	93	
		Clarity					SEI Taxono	omy, 199	93

Program Constraints		SEI Taxo					
Technical p	performance	Chittister,	, 2000				
Resources			SEI Taxor	nomy, 199	3		
a	a. Schedule		SEI Taxonomy, 1993				
b	o. Staff		SEI Taxo	nomy, 199	3		
c	e. Budget		SEI Taxo	nomy, 199			
Cost overn	un	Chittister,	, 2000				
Budgets ur	Budgets unrealistic				Addison a	and Vallab	h, 2002
Cost/Fundi	Cost/Funding					DoD Guio	le, 2003
Unrealistic	schedules and	d budgets		Boehm, 1	991		

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

24

Consolidated – Final List

Category	<u>Source</u>	Frequency	Category	Source	Frequency	
Acquisition			Development	Environment		
	Clear business objectives	2	•	Hardware		
	Proposal			Software		
	Contract			Resource usage and perform	ance	4
	Changes		Organization	al		
	Reviews			Management		7
	Acceptance			Resources and skills		11
Software Development		2		External relationships		2
	Requirements	14		Subcontracting		3
	Architecture	6	Leadershin			U
	Process	3 6		Senior management commitm	pent	3
	Design			User involvement		<u> </u>
	Code and Unit Test	6		Changing scope/objections		- 1 - 3
	Integration and Test	4	Quality	Changing scope/objections		5
	Systems integration		Quanty	Tashui asl naufamuanas		
	Evaluation					5
	Initial Operating Capability	2		Cost		<u> </u>
	Evaluation and Modification	3		Schedule		7
	Final Operating Capability	2		Engineering Specialties		2
	Deployment and support	2	Technology			
	Maintenance	2		New technology		4
	Upgrade and growth	2		Capability		2

NORTHROP GRUMMAN

25

Final Words

Top Four Risks Sources

- Requirements = 14
- People and Facilities = 11
- Management = 7
- Schedule = 7
- Some risks sources are fairly new and therefore not yet prevalent in the literature
 - Agile methods
 - System robustness
 - Metrics
 - System of systems interoperability
 - Accelerated procurement

NORTHROP GRUMMAN

26

References

- Addison, Tom, Vallabh, Seema, Controlling Software Project Risks An Empirical Study of Methods used by Experienced Project Managers, Proceedings of SAICSIT, 2002
- Boehm, Barry, Bose, Prasanta, A Collaborative Spiral Software Process Model Based on Theory W, IEEE 1994
- Boehm, B. W., *Software risk management: principles and practices, IEEE Software*, 1991, 8(1), 32-41
- Buttigieg, D. Anton, <u>Risk Management in a Software Development Cycle</u>, 2004
- Carr, Marvin J., Suresh L. Konda, Ira Monarch, Carol Ulrich and Clay f. Walker, <u>Taxonomy Based Risk Identification</u>, CMU/SEI-93-TR-6, Software Engineering Institute, Carnegie Mellon University, June 1993
- CHAOS, The Standish Group Report, 1995
- Chittister, Clyde, *Risk Associated with Software Development: A Holistic Framework for Assessment and Management*; IEEE Transactions on Systems, Man and Cybernetics, 23(3), May/June 1993
- Chittister, Clyde, Haimes, Yacov Y., Longstaff, Thomas A., Pethia, Rich, Are We Forgetting the Risk of Information Technology?, IEEE Computer, 18-9162, December 2000.
- Conrow, Edmund H., and Patty S. Shishido, Implementing Risk Management on Software- Intensive Projects, IEEE Software, May/June 1997
- Department of Defense (DoD) <u>Risk Management Guide For Dod Acquisition</u>, Fifth Edition (Version 2.0), Defense Acquisition University, June 2003

NORTHROP GRUMMAN

27

References

- Holmes, Andrew, <u>Risk Management</u>, ExpressExec Module 5.1 Finance, Capstone Publishing, 2002
- Jain, Rashmi, Dey, Sujoy, *A Life-Cycle Taxonomy for Assessing Software Development Risks*, Stevens Institute of Technology, 2004
- Johnson, Jim, Boucher, D. Karen, Connors, Kyle, Robinson, James, *Collaborating on Project Success*, February – March 2001.
- Keil, Mark, Cule, E. Paul, Lyytinen, Kalle, Schmidt, C. Roy, *A framework for identifying software project risks*, Communications of the ACM, v. 41 n.11, p. 765-83, Nov. 1998
- Murthi, Sanjay; Preventive Risk Management for Software Projects, IEEE 2002
- Rhodes , Donna H., Air Force/LAI Workshop on Systems Engineering for Robustness Workshop Report, Lean Aerospace Initiative, Massachusetts Institute of Technology, July 2004
- Ropponen, Janne, Lyytinem, Kalle, Components of Software Development Risk: How to Address Them? A Project Manager Survey, IEEE Transactions on Software Engineering, 26(2), February 2000.
- Sage, P. Andrew, <u>Systems Engineering</u>, 1992, John Wiley & Sons, Inc.
- Sherer, A. Susan, The Three Dimensions of Software Risk, Proceedings of the 28th Annual Hawaii International Conference on System Sciences, 1995
- Guidance for the use of Robust Engineering in Air Force Acquisition Programs, July 8, 2004