Tools for Decision Analysis and Resolution

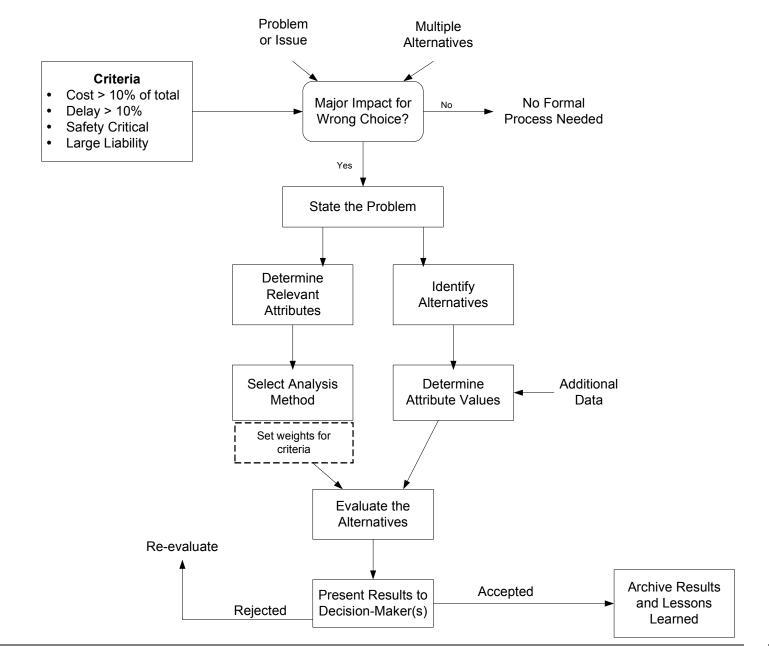
Richard D. Stutzke

Science Applications International Corp. 6725 Odyssey Drive Huntsville, Alabama 35806 USA (256) 864-8383 (office) (256) 864-8200 (facsimile) (256) 864-8397 (asst)

15-18 November 2004

Presented at the 4th Annual CMMI Technology Conference & Users Group Meeting Denver, Colorado

CMMI User 2004 (14OCT04)


© 2004 by R. Stutzke

Topics

- Motivation
- Process
- Descriptions of Methods and Examples
- References

Typical Decisions

- Choose product features (with/without other constraints)
- Identify the "best" design option (trade studies)
- Decide whether to make, reuse, or buy
- Select a COTS component or tool
- Pick a vendor or subcontractor
- Choose a cost estimating method
- Select a risk mitigation approach
- Decide to bid or not
- Terminate software testing
- Modify work products that are already baselined

Approval Voting Example

Feature		E	Total Votes			
	1	2	3	4	5	
А		X				1
В		X	Х		Х	3
С						0
D	Х	X	Х	X	Х	5
Е	Х					1
Total Votes By Voter	2	3	2	1	2	

Steps of Nominal Group Technique

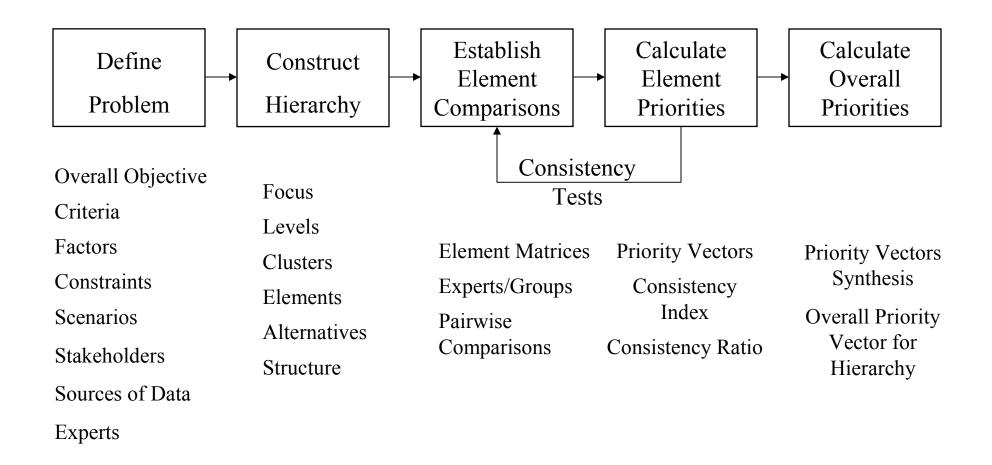
- 1. The Facilitator asks each person to identify the N "best" items (N = L/5)
- 2. Each person chooses and ranks the N "best" items, ranking them from 1....N. ("N" is the most preferred. "1" is the least.)
- **3.** The Facilitator records rankings for each item from all persons
- 4. The Facilitator totals the values for each item.
- 5. The items with highest totals are selected.
- 6. Optionally, discuss top few items, revise item descriptions and repeat process.

Example of Nominal Group Technique

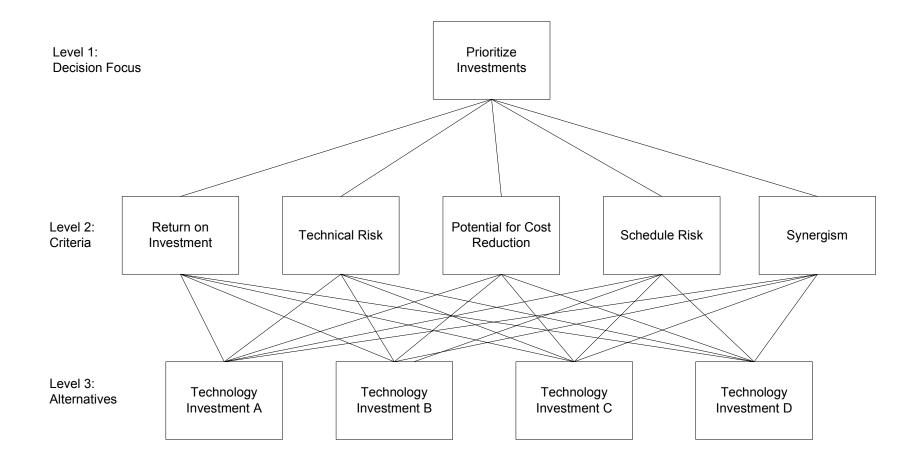
Feature		E	Total Votes			
	1	2	3	4	5	
А		3	2		2	7
В	3	2	1	3	3	12
С						0
D	1	1	3	1	1	7
Е	2			2		4

Multivoting

- 1. Give each person V votes (V \approx M. Alternately, V = L/3.)
- 2. Each person allocates one, two or even all votes to one or more items
- **3.** The Facilitator asks each person for their votes
- 4. The Facilitator totals the votes
- 5. The group eliminates the items with the fewest votes
- 6. Optionally, discuss the top few items, and revise the item descriptions.
- 7. Repeat the process with the revised list if needed


Multivoting Example

Facture	Estimator						Total	Dank
Feature	1	2	3	4	5	6	Votes	Rank
А							0	-
В	3	1	1	1	1		7	1
С			1	1		1	3	3
D		1			2		3	4
Е		1	1	1		1	4	2
F							0	-
G						1	1	5
Н							0	-
Total Votes Cast	3	3	3	3	3	3		


The Analytic Hierarchy Process (AHP)

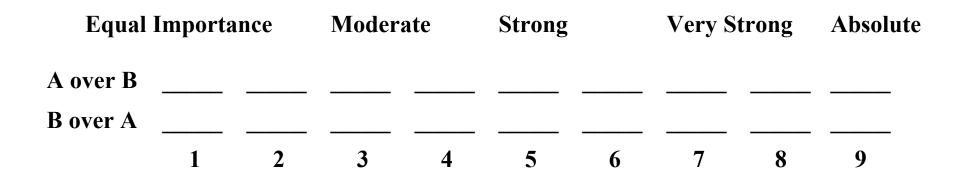
- AHP allows one person or a group to:
 - Structure a complex decision
 - Identify criteria and factors (concrete or intangible)
 - Measure the interactions among them in a simple way
 - Combine the data to obtain the relative priorities of the alternatives
- Examples of criteria:
 - Objective Criteria
 - Technical Data
 - Cost Estimates
 - Subjective Criteria
 - Benefits
 - Risk Information
 - Preferences
 - Political Factors

Steps of the Analytic Hierarchy Process

A Hierarchy for Technology Investment

The Comparison Matrix for Criterion C

- Rows and Columns are the alternatives
- Start with A₁ in left column; compare with all other alternatives wrt criterion C
- Use Saaty's scale to measure comparisons
- Use reciprocal values for elements below the diagonal


Criterion C	A ₁	A ₂	A ₃
A ₁	1	a ₁₂	a ₁₃
\mathbf{A}_{2}	1/a ₁₂	1	a ₂₃
A ₃	1/a ₁₃	1/a ₂₃	1

AHP Rating Scale

Verbal scale	Numerical Value
Equally important, likely or preferred	1
Moderately more important, likely or preferred	3
Strongly more important, likely or preferred	5
Very strongly more important, likely or preferred	7
Absolutely more important, likely or preferred	9

Paired Comparison Questionnaire

Criterion or Factor: _____ Does A dominate B or doe B dominate A with respect to the criterion factor? Indicate how strongly using the appropriate comparison scale:

Calculating the Priority Vector*

Criterion C	A ₁	A_2	A ₃
A ₁	1	1/2	1/4
A_2	2	1	1⁄4
A ₃	4	4	1
Column Totals	7.0	5.5	1.5

Steps

- Divide elements of each column by the sum of that column
- Add elements in each resulting row
- Divide each row sum by n

Criterion C	A ₁	A ₂	A ₃	Row Sums	Priority Vector
A ₁	0.14	0.09	0.17	0.40	0.13
$\mathbf{A_2}$	0.29	0.18	0.17	0.64	0.21
A_3	0.57	0.73	0.67	1.97	0.66

*The eigenvector of the comparison matrix

CMMI User 2004 (14OCT04)

Challenges Faced by Any Technique

- People do not always make perfect decisions (due to ignorance, biases, or manipulative strategies).
- People may change their minds.
- You may not have enough resources (time, money) assign good ratings to all of the factors identified.
- You may fail to identify key factors that greatly affect the desirability of the alternatives.
- It may be difficult to identify orthogonal criteria. (This is not a serious drawback.)