

Integrating CMMI, TSP[™] and Change Management Principles to Accelerate Process Improvement

Julie Switzer, SEPG Lead, NAVAIR P-3C Maritime Surveillance Aircraft Software Support Activity

NOVEMBER 2004

(R) CMM, CMMI and Capability Maturity Model are registered in the U.S. Patent and Trademark Office. SM Personal Software Process (PSP); Team Software Process (TSP); and SCAMPI are service marks of Carnegie Mellon University

Objectives

- Background and current status of the Process Improvement effort
- Applying change management principles to successfully change an engineering culture
- Lessons learned in integrating improvement initiatives and transitioning from SW-CMM to CMMI

Background

P-3C Maritime Surveillance Aircraft Software Support Activity

- Integrate new capabilities into the Navy's land-based, long range P-3C antisubmarine warfare patrol aircraft
- Primarily perform software maintenance and enhancements

Process Improvement Goals

- Positively impact cost, schedule, quality
- Pursue credential as evidence of strong business practices
- Improve the work environment
- Apply High Performance Organization principles to improve MSA SSA's leadership philosophy, culture and business processes
- Satisfy NAVAIRINST 5234.2 Requires software intensive programs to initiate process improvement

MSA SSA Process Improvement Effort

Reasons for Successful Improvement

- Strong Sr. Management commitment and support
- Developed a Process Improvement culture
 - Applied change management principles to gain and maintain buy-in from the team
- Used the Team Software Process (TSP) as a framework and tailored it as needed
- Used SEI Report TR-008 to determine how TSP completely or partially addressed the SW-CMM
- Assigned Process Action Teams (PATs) to form the organization's standard process architecture (the Golden Process) and document processes for each phase of the product life-cycle based on the organization's best practices

NAV AIR P-3 Maritime Surveillance Aircraft **Software Support Activity Golden Process**

Code Development Phase

Applied Change Management Principles

- Used High Performance Organization (HPO) Methodologies to motivate the team and gear up for change
 - Mission Statement
 - Values Statement
 - Organizational Goals
 - Strategic Customer Value Analysis
- Built a coalition and shared decision-making
- Created an environment that encouraged individual and collective learning
- Maintained momentum
- Managed resistance patiently, but firmly
 - resistance to change occurs because people don't understand it, they
 perceive it as a threat, or it's forced on them

"People don't resist change. They resist being changed!"

~ Peter Senge

Developed a Process Improvement Culture

Launched a communications campaign

- Kept the team informed Continued to remind them that Process Improvement is an integral part of their job
 - Pep talks from Sr. Management
 - Training
 - Posters
 - Newsletters
 - Team-building picnics
 - Logos
 - Contests
 - Process Improvement Group (PIG) Mascot

Process Improvement is hard work – do what you can to make it fun!

"We are what we repeatedly do. Excellence, then, is not an act, but a habit." ~ Aristotle

Process Improvement Group MASCOT

DVEHLANCE AIDEDAET NAVA

Benefits of Using TSP

- Team communication has increased exponentially
 - Weekly TSP project meetings; monthly TSP project lead reports and meetings with Sr. Management create a collaborative work environment
- Team planning includes all stakeholders
- Outputs of the TSP launch constitute the project plans. No need to generate additional "shelf paper"
- By using historical data, teams estimate more accurately

Used TSP to Increase Performance

Increased software engineering productivity

Improved schedule variance (6 months delay to 1 week delay to on time delivery)

	<u>A4.7.3</u> (Baseline)	<u>ASQ-222</u> <u>3.1</u>	<u>ASQ-227 3.1</u> <u>**</u>	<u>Percent</u> <u>Change</u> (Baseline)
SLOCS	27,880	32,780	36,690	n/a
Productivity (SLOCs/Hr)	2.7	2.7	4.9	+81%
Development Defects	n/a	n/a	105	n/a
Test Defects (SPRs)	128	69	12 ***	n/a
Defects per KSLOCs	4.6	2.1	1***	-78%
Plan DT Release	****	12/4/2000	1/26/2004	
Actual DT Release		5/29/2001	2/5/2004	

** Formal initation of PSP/TSP process along with MSA specific processes.							
*** Final build testing is incomplete, project number of test defects estimated to be 37 (1 per 1 KSLOCS							
**** Many requirements changes throughout program caused excessive replanning, dates meaningless							

Used TSP to Accelerate to Level 4

- TSP satisfied approximately 90% of all Level 4 Key Practices
- Projects using TSP were performing Level 4 activities
- TSP measures were used for both process and product quality (size, time, defects, completion dates)

NAV TSP "Planned Quality" **SSP** Comes from the TSP "Quality Guide"

Measure	Goal	Comments
Percent Defect Free (PDF)		
Compile	> 10%	
UnitTest	> 50%	
Integration Test	> 70%	
System Test	> 90%	
Defects/KLOC:		
Total defects injected	75 - 150	If not PSP trained, use 100 to 200.
Compile	< 10	All defects
Unit Test	< 5	All major defects (in source LOC)
Integration Test	< 0.5	All major defects (in source LOC)
System Test	< 0.2	All major defects (in source LOC)
Defect Ratios		
Detailed design review defects /unit test defects	> 2.0	All major defects (in source LOC)
Code review defects/compile defects	> 2.0	All major defects (in source LOC)
Development Time Ratios		
Requirements inspection/requirements time	> 0.25	Elicitation in requirements time
High-level design inspection/high-level design time	> 0.5	Design work only, not studies
Detailed design/coding time	> 1.00	
Detailed design review/detailed design time	> 0.5	
Code review/code time	> 0.5	
Review and Inspection Rates		
Requirements pages/hour	< 2	Single-spaced text pages
High-level design pages/hour	< 5	Formatted design logic
Detailed design text lines/hour	< 100	Pseudocode ~ equal to 3 LOC
Code LOC/hour	< 200	Logical LOC

ARITIME SURVEILLANCE AIRCRAFT NAV A

What you are doing today What you need for Level 4

Lessons Learned

- Develop a Process Improvement culture
- Keep the team informed and involved
- Use PSP/TSP and allow teams to tailor processes and templates based on what makes sense for them
- Recognize that not everyone needs to understand the model
 - Allow PATs to document what they do
 - Assign a process improvement lead to perform a gap analysis using the model and work with PATs to fill the gaps
- Ensure that PATs communicate early and often
- Network
- Create simple databases and spreadsheets to use for tracking training data, etc.
- Establish a central repository for process assets and institute standard nomenclatures for artifacts as early as possible

SURVEILLANCE AIRCRAFT NAV SAIR

Transitioning to CMMI

- Review/revise
 - Mission
 - Values
 - Customer Needs
 - Goals
- Use SEI report to map TSP to CMMI (pending formal release)
- Perform a gap analysis and develop action plans for each PAT
 - Focusing first on areas not addressed in the CMM
- Address improvement opportunities noted in the CBA IPI

Maritime Surveillance Aircraft 🛛 🗛 📈 📈 🗛 🖙

Contact Information

Julie Switzer Phone: 301-342-2585 Email: Julie.Switzer@navy.mil

QUESTIONS?