

Transforming a Level 5 Software Process into an Integrated Engineering Process

Bruce Boyd Associate Technical Fellow The Boeing Company Integrated Defense Systems St. Louis, Missouri Judy Naclerio Manager – Systems Engineering The Boeing Company Integrated Defense Systems St. Louis, Missouri

Problem Statement

How do you effectively and efficiently transform a *SW-CMM Level 5* organization

What are the technical issues?

What are the *cultural* issues?

to CMMI?

What "good" behaviors should be sustained?

What "bad" behaviors should be avoided?

Technical Issues in Transitioning to CMMI

- Understand differences between SW-CMM and CMMI
 - Continuous Capability vs. Staged Maturity
 - Process Areas vs. Key Process Areas
 - Generic Practices vs. Common Features
 - "New" Terminology and Concepts
 - Map the existing process set to CMMI
 - Usually results in a set of "gaps" to be filled
 - Write new processes? Or patch the old ones?
- Expand the scope of the organization
 - Start with "Software-Intensive Systems"
 - Expand to include non-software systems?
 - Other engineering disciplines are now expected to learn from the experience of the software engineering discipline

Cultural Issues in Transitioning to CMMI

How does the organization define Systems Engineering? What is it?

Who does it?

When does it get done?

- How integrated are the engineering disciplines on each project?
- How much process focus exists outside software engineering?
- How open are the "hard engineering" disciplines to learning from "soft(ware) engineering"?
- How do you transition from SEPG to EPG?

"Good Behaviors" in SW-CMM

Behaviors to sustain using CMMI...

- Complete and detailed planning as captured in Software Development Plans
- Use of organizational standard processes and process assets
- Project management using facts and data
- Use of peer reviews to find defects earlier and cheaper
- Quantitative management and improvement of process performance and product quality
- Use of defect prevention (causal analysis) to eliminate root causes of product defects

"Bad Behaviors" in SW-CMM

Behaviors to discourage or eliminate using CMMI...

- Treating software as "different" or "special"
- Putting a wall and moat around the software project
- Failure to recognize the systems engineering nature of software engineering
- Writing processes and other assets in "softwarecentric" language
- Maintaining a "closed" organization process set

Performance Improvement History

BOEING

.... then Along Came CMMI

BOEING®

In 2001, Boeing did a pilot SCAMPI appraisal of a set of representative software and hardware development projects. Some general findings were...

- Hardware development projects operate differently and are managed differently from software projects
- Risk Management and Supplier Management were very strong
- Project Planning tended to be limited to schedules
- Engineering practices were performed, but not to defined processes
- Product quality and process performance were managed reactively

Organization Challenges

Boeing IDS – St. Louis is a large, diverse site...

Business units...

- Naval Systems
- Air Force Systems
- Aerospace Support

Engineering Disciplines...

- Software
- Electronic Systems
- Systems and Flight Engineering
 Design and Manufacturing
 - Manufacturing Flight and Laboratory Operations

Programs and product lines...

- Tactical Aircraft
- Weapon Systems
- Training Systems
- Support Systems
- Multi-site programs
- Over 4000 engineers
- Over 100 significant identifiable projects!

Keys to our CMMI Approach

Meet Company Goals for CMMI Levels and Support Long-Term Performance Improvement

Involve Projects During Process Development to Capture Current Project Practices

Develop an Integrated Set of Engineering Processes, not Parallel SW and SE Processes

Approach

- Focus first on Software Intensive Systems
- Attempt to reuse existing process assets
- Build upon known mature projects
- Expand scope of engineering life cycle processes
 - System requirements definition and design
 - System integration
 - Program management
 - Common supporting processes
- Initially include three engineering divisions
 - Systems and Flight Engineering (SAFE)
 - Electronic Systems Engineering (ESE)
 - Software Engineering Division (SED)

Transition Path to CMMI Processes

12

Primary CMMI Transition Activities

- Process Definition
 - Define, develop, and publish the CMMI processes
- Organization Infrastructure
 - Establish organizational assets and management structures
- Project Support
 - Facilitate and enable projects to tailor and use the processes
- Training
 - Identify, develop, acquire, and deliver needed training
- Appraisals
 - Assess and evaluate our processes and their execution
- Strategic Transition Planning
 - Plan for transitioning CMMI processes across the site

BOEIN

Transitional EPG Structure

Reuse Analysis of Existing Processes

Engineering	Reuse of	PAP	Engineering	Reuse of	PAP
Organization's Set of Standard Processes	Existing	Team	Organization's Set of Standard Processes	Existing	Team
Project Organization Process	FIOCESSES	Management	Assess Alternatives and Recommend Solution	FIOCESSES	Engineering
Project Staffing Process		Management	ESE Estimating Process		Engineering
Scheduling Process		Management	Manage Interfaces and Ensure Compatibility		Engineering
Standard Software Defect Prevention Process		Software	Subsystem Qualification Testing Process		Engineering
Project Process Set Definition Process		Support	Software Quality		Quality
Project Process Maintenance Process		Support	SQ Audits and Evaluations		Quality
Risk Management Process		Support	SQ Problem Tracking		Quality
Project Training Process		Support	SQ Pre-Award Planning		Quality
Peer Review Process		Support	SQ Support of Supplier Software Development		Quality
Problem Handling Process		Support	SQ Support of Customer Milestones		Quality
Standard Software Estimating Process		Software	SQ Post-Award Planning		Quality
Standard Software Requirements Analysis		Software	Configuration Management Process		Support
Process					
Standard Software Design Process		Software	Requirements Management		Engineering
Standard Software Implementation Process		Software	Requirements Development		Engineering
Standard Software Testing Process		Software	Design/Technical Solution		Engineering
Standard Software Qualification Testing Process		Software	Product Integration		Engineering
Standard Software Release Preparation Process		Software	Verification		Engineering
Planning Process		Management	Validation		Engineering
Project Management Process		Management			
Quantitative Management Process		Management	COLOR CODE KEY		1
Project Reviews Process		Management	Can be used with minor modifications		
			Mill require mederate medifications		4

Will require a new process to be written

Over 80% of the Software Standard Processes were reusable as Engineering Organization Standard Processes (EOSSP)

Copyright 2004 by Boeing. Developed by IDS, St. Louis, 18 November 2004: CMMI Technology Conference

A BOEING

The **EOSSP**

Boeing - St. Louis Issue Date: 6 August 2004 Engineering Organization Set of Standard Processes (EOSSP)

Maintained by: Kelly R. Sullivan

Note: The EOSSP can also be accessed thru the EOSSP CPR.

Table of Contents

EOSSP-EOP-001	Engineering Organization Performance Improvement Infrastructure	
EOSSP-EOP-002	Engineering Organization Set of Standard Processes (EOSSP)	;
EOSSP-EOP-003	Engineering Organization Project Defined Processes	1
EOSSP-EOP-004	Standard Organization Process Development Process	1
EOSSP-EOP-005	Engineering Organization Release of EOSSP and CPR TOC Process	1
EOSSP-EOP-006	Engineering Organization Process Asset Library (PAL) Management Process	1
EOSSP-EOP-007	Engineering Organization Quantitative Management Process	1
EOSSP-EOP-008	Engineering Organization Process Improvement, Deployment, and Waiver Review Process	1
EOSSP-EOP-009	Engineering Organization Action Planning Process	
EOSSP-EOP-010	Engineering Organization Appraisal Process	
EOSSP-EOP-011	Engineering Organization Training Planning Process	
EOSSP-EOP-012	Engineering Organization Training Development and Acquisition Process	
EOSSP-EOP-013	Engineering Organization Training Needs Assessment and Delivery Process	1
EOSSP-EOP-014	Engineering Organization Quality Core Process	i.
EOSSP-EOP-015	Engineering Organization Software Technology and Process Change Management Process	
EOSSP-EOP-016	Engineering Organization Standard Process Change Process	1
EOSSP-EOP-017	Engineering Organization Asset Development/Update Process	1
EOSSP-EOP-018	Engineering Organization Performance Improvement Council Process	
EOSSP-SP-001	Standard Project Training Process	
EOSSP-SP-002	Standard Configuration Management Process	

PSPDS contains the current variable of this procedure. Unconholied when printed. Page i of it

Boeing - St. Louis Issue Date: 6 August 2004 Engineering Organization Set of Standard Processes (EOSSP)

OSSP-SP-004	Standard Software Design Process	6 August 2004
OSSP-SP-005	Standard Software Implementation Process	6 August 2004
OSSP-SP-006	Standard Software Testing Process	1 April 2004
OSSP-SP-007	Standard Software Qualification Testing Process	6 August 2004
OSSP-SP-010	Standard Peer Review Process	6 August 2004
OSSP-SP-011	Standard Project Process Set Definition Process	6 August 2004
OSSP-SP-012	Standard Project Process Maintenance Process	6 August 2004
OSSP-SP-013	Standard Process Audit and Work Product Evaluation Process	9 June 2004
OSSP-SP-014	Standard Software Quality Problem Tracking Process	12 April 2004
OSSP-SP-015	Standard Risk Management Process	9 June 2004
OSSP-SP-016	Standard Problem Handling Process	6 August 2004
OSSP-SP-017	Standard Design and Implementation Process	6 August 2004
OSSP-SP-018	Standard Engineering Estimating Process	6 August 2004
OSSP-SP-019	Standard Requirements Management Process	6 August 2004
OSSP-SP-020	Standard Project Planning Process	9 June 2004
OSSP-SP-021	Standard Project Organization Process	6 August 2004
OSSP-SP-022	Standard Project Staffing Process	12 April 2004
OSSP-SP-023	Standard Project Scheduling Process	12 April 2004
OSSP-SP-024	Standard Project Management Process	9 June 2004
OSSP-SP-025	Standard Project Reviews Process	9 June 2004
OSSP-SP-026	Standard Project Quantitative Management Process	9 June 2004
OSSP-SP-027	Standard Validation Process	6 August 2004
OSSP-SP-029	Standard Requirements Development Process	6 August 2004
OSSP-SP-032	Standard Technical Decision Process	1 April 2004
OSSP-SP-033	Standard System Integration and Verification Process	6 August 2004
OSSP-SP-034	Standard Hardware Quality Problem Tracking Process	12 April 2004

PSPDS contains the current version of this procedure. Uncontrolled when printed Page II of II

Results to Date

- We collaborated with the target projects to define and publish the EOSSP
 - Project participation in "PAP Teams"
 - Conducted "Blitz" project reviews
 - First EOSSP release published in October 2003
- We conducted Class B appraisals in December 2003, July and October 2004
 - Validated the EOSSP against CMMI ML3 practices
 - Explored ML4/5 practices using EOSSP/OSSP hybrid
 - Evaluated project execution against all Process Areas

Lessons Learned

- Having integrated processes enables, but does not drive integrated execution
- Effective and understandable tailoring guidelines are challenging to define
- When projects do not understand process applicability, they request waivers
- Some software projects have had difficulty expanding their scope to include systems engineering
- Writing "generic" processes leads to misunderstanding better to be specific, but offer alternative process steps

What's Next?

18

- Expand the appraised organization to include more projects
- Include the remaining engineering disciplines and functions
 - Design and Manufacturing Engineering (DME)
 - Flight and Laboratory Operations (FLO)
- Strengthen synergy with other models/initiatives
 - 6-Sigma
 - Lean Engineering
 - Malcom Baldrige Criteria
- Complete the EOSSP processes
 for full Level 4 and 5 capability

Questions?

Bruce Boyd Associate Technical Fellow The Boeing Company bruce.a.boyd@boeing.com (314) 233-2347

> Judy Naclerio Manager – Systems Engineering The Boeing Company judith.w.naclerio@boeing.com (314) 233-2040