

Using Process Simulation in Quantitative Management

Denver, Colorado November 16, 2004 D. R. Corpron Senior Manager & Master Black Belt

YBERSPACE

SPACE

OUTER

0

NDERSEA

HONNY

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

Preview

- What is the problem?
- Why process simulation?
- Steps to perform the simulation
- Data checks
- Mapping the process
- Animating the process
- Interpreting the results

NORTHROP GRUMMAI

What is the problem?

<u>Can we achieve our</u> project's objectives for quality and process performance? Subject to:

- Required to add new features or fix defects according to Customer change requests
- Two levels of priority...
 - A. Must Have (90%)
 - B. Nice to Have (45%)
- Required to perform work on a fixed allocation of hours in a specific time frame

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

What's the practice?

Corregie Mellon Software Engineering Institute

Capability Maturity Model[®] Integration (CMMISM), Version 1.1

CMMI^{sul} for Systems Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing (CMMI-SE/SWIPPD/SS, V1.1)

Staged Representation ovusin-2002-ns-ot2 nso-re-2002-ot2

Improving processes for better products

CIVIAI Product Team

March 2002

Unitships distributes subject to the subject.

SP 1.4: Monitor the project to determine whether the project's objectives for quality and process performance will be satisfied, and identify corrective action as appropriate. [PA165.IG101.SP104]

NORTHROP GRUMMA

Why process simulation?

- Build on existing process maps
- Can judge common cause risk because it is probabilistic rather than deterministic
- Even aperiodic processes can be executed many times to see variability in time compressed views
- Easy to perform "what if" analysis with instant results and no disruption of the real process
- Aggregate performance of the parts to predict the mean and variability of the overall process
- Compare predicted performance to Customer's critical-to-quality requirements

NORTHROP GRUMMAN

What steps are required?

NORTHROP GRUMMAN

right 2004 Northrop Grumman Corporation

Start by mapping the process...

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

Check normality of incoming CR's...

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

Sample productivity...

Productivity is normally distributed...

DEFINING THE FUTURE

10

NORTHROP GRUMMAN

NORTHROP GRUMMAN

Input data via dialogue boxes...

Inputs Summary	Resources Attributes	Ta: Genera	sk 31	Outputs Custom Data
Active	Location	Name	Value	•
🖃 Enter	24		1.1	
	Transaction	Effort_A	Priority_A* NormDis	
Exit				
	Add D	elete	Defir	ne Attributes
<u> </u>	Add D	elete	Defir	ne Attributes

- Resources: Number of workers required to perform the task
- Task: Time to perform the task (in this case a normal distribution with the mean and standard deviation entered)
- Attributes: Any data calculation that needs to be performed (in this case the number of Priority A change requests to be implemented)

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

Analyze the results...

NORTHROP GRUMMAN

Copyright 2004 Northrop Grumman Corporation

Conclusion...

- High confidence that Customer's requirements can be met
- Know how to adjust process variables to handle more or less change request demand

