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* Develop a scientific
understanding of...

— Stress distribution _
and concentration 7~ High Stress/Pressure

' 0
— Microstructural High Temperature (>250°C)

transformation High Power/Voltage
(switches, u—wave)

.. for devices
functioning in Corrosion
harsh environments < .
Erosion and Wear

to better predict
fallure and improve Radiation

sensitivity \_ Shock and Vibration
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SiC selected as material...

* Wide Bandgap — 2 x Silicon
e High Thermal Conductivity
* Polytypic (3C, 6H, ...)

* Chemically Inert

® Superior Mechanical
Properties over Si

— 3 x Yield Strength
— 3.5 x Young’'s Modulus

* Similar strains... due to
greater max yield strength

CUBIC jor ZINCBLEMNDE] HEXAGOMAL

Created 1993 by ¥Wirgil E. Shields



i- } . . .
\;{ Design and Fabrication

:h-*-;w /
e "-I',.r;.“‘-
™

-

Inner Outer
Resistors Resistors

Metallization

Device Concept:

Suspended membrane with
piezoresistive elements
(mesas)

SiC circular
membrane

— Epilayer deposition Compressive Tensile

e PECVD stres<< / stress

— Bulk micromachining
of silicon carbide

. Shbck
* Reactive lon Etch | g_erce
(Anisotropic)

Stress contour plot

6
Source: K. Kornegay, Cornell U.



Design and Fabrication

Device series:

1. Cornell Types 1-3
2. NASA Generation 1
3. NASA Generation 2

é. Optical micrograph of Gen 1 NASA
sensor (no boss)

TYPE 1 TYPE 2 TYPE 3

1. SEM micrographs of the Cornell designs

3. SEM micrograph of Gen 2 NASA
sensor (with boss)
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% Design and Fabrication

Sample SiIC MEMS Operation (NASA Generation 1)

Compression Tension

Shock

Stress contour plot

1 4

Wheatstone
Bridge 0
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* Microcharacterization
— SEM, XRD, etc.

* Stress Evaluation
(Accelerometers)

— Steady State (Centrifuge):
Calibration

— Dynamic (Shock Machine):

Real Time Data

— Temperature: Internal
Stress Development

* Develop feedback for future
designs, understanding of
fundamental mechanisms

Hopkinson Bar

VHG —>




Evaluation

Very High-g (VHG) Machine

« Dynamic Test to Failure

 Determine Real-Time Stress from
Centrifuge Data

e Separation of Design and Material
Properties Failures

e Serves as Baseline for Empirical
Modeling

 VHG allows determination of failure
due to mechanical stress and
resonance frequency phenomenon

11



Evaluation

Baseline: Endevco 7270A
e Peak mag up to 200k x g
e Survivable
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Cornell University Types 1-3

Simple membrane devices
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SiC MEMS device Black — Endevco 7270
matched output Gray — SIC MEMS (CU1)
of Industry to—— —
Standard

Endevco 7270
Accelerometer
within 5% up to
20k X g

Very low
sensitivity
(75 nV/g) |
compared to I A
Endevco (4 uVv/qg)

14



Results

NASA Generation 1

Innovative design with boss for increased sensitivity

2Z2Z2Fm  BB42

A SEM micrograph of the backside deep
reactive ion etch for the NASA bossed sensor.
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e NASA SiC MEMS
matched output
of Endevco 7270
to 8k x g

® Survived to
80k x g

* Sensitivity:

Results

Blue— Endevco 7270
Red — SIC MEMS (NASAL)

“Wf) W\\“MM W




® Strong “cross
axis” sensitivity
Or Cross axis
resonance mode
was observed
~9k X g

* Cross axis
sensitivity
Increased with
Increasing axial
g’'s, dominating
signal

* New design: no
boss

Results

Blue— Endevco 7270
Red — SIC MEMS (NASA1)

acceleration (kgn)

Crossaxi
sensitivi

ceeleration (kg )

Cross axis
sefsitivity

time (msec)
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NASA Generation 2

No boss for decreased cross-axis sensitivity

18



« Matched output of
Endevco 7270 until
a dominating
resonance mode
around 1.3 msec

e Qutput recovered
around 1.6 msec
and matched that
of the Endevco
7270

Results

nfkg)

atiol

Blue — Endevco 7270
Red — SIC MEMS (NASA2)

cceleration (kgn)

Resonance Begins

N7

000000000000

“°rResonance Begins

Recovered output

1.4
time (msec)



 Repeatable
results

« Matched the
Endevco 7270
first peak
Intensity very well

Results

acceleration (kg )

Blue — Endevco 7270
Red — SIC MEMS (NASA2)

acceleration (kgn)

T
7777777777777777

Resonance Begin Recovered outpu

00000000000000

= SiC 7 PRES550 (50 nV/g) H

"

Resonance Begins Recovered output

1.4
time (msec)
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* Three Generations of SIC MEMS have been modeled,
fabricated and evaluated for Stress development

— Cornell University Types 1-3
* Simple Round Membrane
— Easy to model, fabricate and interpret scientific data
— NASA Glen Research Center Generation 1
* Complex designs for Improved Sensitivity
— More Difficult to Interpret Data but more sensitive
— NASA Glen Research Center Generation 2

* Redesigned to avoid problems from gen 1

21
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e Established MOA with NASA Glenn Research center
for Long-Term, Joint SIC MEMS Collaboration

e First Published Peer Reviewed Journal Article on SIC
MEMS: IEEE Journal of Sensors and Actuators A 104,
2003 (11-18)

* First Conference Paper on Operating SIC MEMS.:
Jan 02 IEEE Conference, Las Vegas, NV

* PhD Dissertation at Cornell University by Dr. Andy
Atwell: Modeling,Simulation, and Fabrications of SIC

MEMS
— Funded by AFOSR and NASA Glenn

22
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Material effects of thermomechanical cycling

— Thermal cycling coupled with mechanical cycling
Improving device function and reliability

— Increasing axial sensitivity

— Decreasing cross-axial sensitivity

— Reducing bias

Enhanced “nondestructive” evaluation in situ

— Velocity interferometer (VISAR)

23
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\J Future Work

* |nvestigating microstructural changes
— Defects
— Hysteresis
— Phase changes

* Initial shock tests of 1st generation NASA GRC
accelerometers

* 2nd generation NASA GRC accelerometers (4Q04)

24
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1’

e SIC MEMS that function in harsh environments have
been demonstrated

— Fabricated (Cornell, NASA Glenn)
— Tested (AFRL/MN)

* Improvements necessary to achieve desired
functionality

— Problems with cable noise, sensitivity, cross-axis

e Continuing investigation by focusing on fundamental
mechanisms will enhance effort

25
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SIC: Mechanical Properties

Droperty Takle

Percentages in parenthesez denote estimated combined relative standard uncertainties of the property values.

For example, 3.0(5%) iz equivalent to 3.0 +/- 0.15. Property wvaluezs in parenthesezs are eXtrapolated values.
Property [unit] 20 *cC s00 fC 1000 *cC 1z00 °cC 1400 °C 1500 °C
Bulk Modulus [GFal v i v ennannnns 203 (3%) 197 191 158 156 154
Creep Rate [1077 =711 at 300 MPa..... o o o 0,004 (17%) o0.27 1.6
Density [O/omE] v et i e e e e e enenn 3.16101%) 3.14 3.11 3.10 3.09 3.08
Elastic Modulus [GFal v i v ennennnns 415 (3%) 404 392 agv 383 380
Flexural Strength [MPal....cvveueenn 359 (15%) 354 397 437 446 446
Fracture Toughness [MPa m”z] ........ 3.1(10%) 3.1 3.1 3.1 3.1 3.1
Friction Coefficient [], 0.2 mf=,5 N 0.7(21%) 0.4 0.4

Hardness (Vickers, 1 k) [GPal...... 32 (15%) 17 2.9 [6.9) [5.3) [4.6])
Lattice Parameter al(polytype &H) [i] 3.0815(0.01%) 3.0874 3.0950 [3.0934) (3.1021) [3.1040)
Lattice parameter o(polytype &6H) [i] 15.117(0.02%) 15.144 15.1739 [15.194) (15.210) [15.218)
Poizson's Batio [].v et inrannnnnnns O0.16(25%) 0.159 0.15%7 0.15%7 0.156 0.156
Shear Modulus [GPal ..o v i v i v ennnns 179 (3%) 174 159 157 166 165
Sound Velocity, longitudinal [ln/=]. 11.82 (2%) 11.69 11.5%7 11.52 11.47 11.44
Sound Velocity, shear [kn/=]........ 7.52(2%) 7.45 7.38 7.35 7.32 7.31
Specific Heat [J/ kg K] ........0o.... T1E(E5%) 1086 1240 1232 1315 1336
Ten=sile Strength [MPal... ..o iuennn ZE0(6%) 250 250 250 250 250
Thermal Conductivity [Wm-E]........ 114(8%) E5.1 35.7 31.3 27.8 26.3
Thermal Diffusivity [cwé/s]..vvevens 0.50(12%) 0.16 o.09:z a.a7s 0,065 O.064
Thermal Expansion from 0 °C [10° 81 1.1010%) 4.4 5.0 5.2 5.4 5.5
Wear Coefficient (Logll) [],0.2 mifs,5 W —-4.0(5%) -3.6 -3.6 oo oo oo
Weibull Modulus [J o evranrannsnnsns 11(27%) 11 11 11 11 11

Source: NIST SRM



SIC: Electrical Properties

PROPERTY 3C-5IC 6H-5iC
Bandgap (&V)

at 300 K 2.3 2.9
Maximum operating

tern perature (@) 300 573 873
Melting point (@) Sublimes >1800 Siblimes =1800
Fhysical stability Excellent Excellent
Electron mobility

(em?/ V) 1000 600
Heale mobility

(crnd/ V=) 40 40
Breakdown field, K, (10®WV/cm) 4 4
Thermal conductivity,

o (W /crm-oC) 5 5

Sat, elect. drift velority,

Veat (107 e/ 5 2.3 2.3
Dieler tric constant, € 9.7 9.7

Source: V. Shields, JPL (NASA)



Accelerometer Circuit Configuration

8 7 6 5

Notch —

The above configuration makes the Wheatstone Bridge an open one. It allows each
resistor element BC, CD, DE, and EA to be measured independently. When 2/3 is
connected together, the bridge is closed. To be consistent, the power supply Vin, and

Vin, should be connected at pin 7 and 2/3, respectively. The output Vo, and Vo, should
be tapped at pin 6 and 1, respectively.



Wirebonds Diaphragm

Piezaoresistors

OBJECTIVE

« UNDERSTAND STRESS DEVELOPMENT AND
DETERMINE FUNDAMENTAL FAILURE
MECHANISMS OF SILICON CARBIDE MEMS
ACCELEROMETERS UNDER HIGH SHOCK AND
HIGH TEMPERATURE LOADING TO ENABLE
USE IN HARSH ENVIRONMENTS

PAST ACCOMPLISHMENTS

* FIRST GENERATION ACCELEROMETERS FABRICATED AND
EVALUATED - DATA TO BE PUBLISHED

¢ THREE TYPES OF DEVICES WERE DESIGNED AND FABRICATED TO
ALLOW FOR ACCURATE DETERMINATION OF STRESSES

¢ SECOND GENERATION DEVICES HAVE BEEN DESIGNED AND
EVALUATED

TECHNICAL MILESTONES

* INITIAL FEASIBILITY STUDY IN SIC MEMS 2Q99
* INITIAL DESIGN OF SIC MEMS

ACCELEROMETER 4Q99
« INITIAL FABRICATION OF SIC MEMS 2Q00
« EVALUATION OF FIRST GENERATION

DEVICES 3Q00

OPR: DR.SCOTT ROBERSON, DSN 872-2006, X32257
PA 00-395
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