Pyrotechnic Bomblet Self Destruct Fuze (SDF) for GMLRS

Presentation for 48th Annual Fuze Conference
April 26th - 28th, 2004
Charlotte, NC

by Rudolf Harbrecht

★JUNGHANSFeinwerktechnik

Schramberg: administration, sales and machine shop for components

Seedorf: R&D and assembly shop

Organisation and Management Structure

Wide Product Range at JUNGHANS Feinwerktechnik:

Mechanical and Electronic Fuzes For:

- Artillery Ammunition
- Mortar Ammunition
- Tank Ammunition
- Anti-Tank Ammunition
- Medium Calibre Ammunition
- Rockets
- Submunition
- Safety & Arming Devices

 Company Experience in MLRS and Self destruct Fuzes for Grenades

Electronic Time Fuze for European MLRS AT2

From 1993 to 1997 production of more than 10.000 fuzes

Self destruct Fuze for 155mm Artillery Shell (15 sec delay)

- in production from 1988 to 1992
- more than 12 mio produced maximal daily rate of 20.000 SDF
- actual firings do not show any degradation in performance

Development of a Self-Destruct Fuze for M77 Grenades with a delay time of 25 seconds.

 JUNGHANS Feinwerktechnik and GIAT Industries have teamed in their experiences to provide a Self Destruct Fuze (SDF) for GMLRS bomblets

- JUNGHANS started the development in December 2001. The major requirements for the development of the SD-Fuze are:
- the weight:
 - the SDF weight should be less than 20g
- the impact functioning rate
 - more than 95%
- the hazardous dud rate:
 - less than 1% (desired 0,1%)
- the delay time:
 - within temperature range: T ≥ 25 sec
- the temperature range:
 - function: from -32°C to +60°C

ribbon assembled welding cup safety pin lower fuze body assembled spring

Hazardous Classification: in packaging 1.4 D out of packaging 1.4 D

upper fuze body assembled rotor assembled

SD-Fuse on inert Bomblet: Hazardous Classification: in packaging 1.4 D out of packaging 1.4 D

Laser Welding

Functioning Modes of the SDF

1st step after dispense:

- ⇒ ribbon unfolded (aerodynamical effect)
- ⇒ locking pin removed
- ⇒ slider unlocked

2nd step:

- ☑ slider moves in armed position and initiates input relay
- ✓ Slider released rotor to arm
 - SD mode active

Rotor in unarmed position

slider

spring

3rd step:

- ⇒ ribbon unscrews the firing pin (left handed thread)
- ⇒ rotor is unlocked

4th step:

- ⇒ rotor turns in armed position
- ⇒ fuze is armed

marking with red colour, "armed position"

rotor in armed position

- Firing Pin Initiates the M55 Stab Detonator
 - ⇒ Primary Mode: Impact

5th step:

- \Rightarrow target impact
- ⇒ firing pin initiates M55 stab detonator

- Output Relay Initiates the M55 Stab Detonator
 - ⇒ Secondary Mode: SD Mode (complete Bomblet)

- Output Relay Initiates the M55 Stab Detonator of an unarmed SDF
 - ⇒ Back up Mode: Neutralization Mode (complete Fuze)

Demonstration Phase

- May 2000 to November 2001
- Status: performed on schedule

Development Phase

- December 2001 to December 2004
- GMLRS Qualification forth quarter 2004

Industrialisation Phase

- on customer request
- possible start July 2004

A Company of **Diehl VA Systeme**

- BFT5 at Meppen Proving Ground
 - Scheduled November 16th 2003
 - 3 MLRS rockets
 - SDF Design with 25 sec. Delay Element
 - range: 2 rockets on approx.11 km, one rocket on approx. 20 km
 - temperature: 1 rocket at +60°C, 1 rocket at +51°C, 1 rocket at -32°C

Results:

- a dud rate less than 1% could be proved
- a reliability of more than 97% for the delay chain could be proved
- the required impact functioning rate of more than 95% was missed

- BFT5a at Meppen Proving Ground
 - Scheduled March 15th 2004
 - 1 MLRS rocket
 - SDF Design three configurations, impact functioning mode only
 - range: approx.11 km
 - temperature:ambient

Results:

- an impact functioning rate of 95% could be proved with one configuration
- an over all arming reliability of more than 99% could be proved
- dud rate was not subject for prove

Upcoming Tasks

- Flight Test DVT3 / Fly-Off2 at WSMR
 - scheduled June 2004
 - 2 GMLRS Rockets
 - each rocket is equipped with 404 bomblets from two vendors, 202 from each
 - 50% of the bomblets are w/o delay chains for impact functioning rate prove,
 50% of the bomblets are fully equipped for proving full functioning rate, dud
 rate and UXO rate
 - Temperature: hot (60°C/140°F)
 - Range: approx. 20 km
- PQT
 - scheduled October 2004
 - 9 GMLRS Rockets with 404 bomblets each,
 - 50% impact functioning mode only, 50% full functioning mode
 - full STANAG environmental Ground Tests