

DEFINING THE FUTURE

Squeezing Variation for Profit

CMMI® Technology Conference and User Group Denver, Colorado

Thursday, November 17, 2005

101

D. R. Corpron Division Manager & Six Sigma Master Black Belt Northrop Grumman Corporation

Background...

Capability Maturity Model[®] Integration (CMMISM), Version 1.1

CMMISM for Systems Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1)

Staged Representation CMU/SEI-2002-TR-012 ESC-TR-2002-012

Improving processes for better products

CMMI Product Team

March 2002

Unlimited distribution subject to the copyright

- CMMI Level 4,
 Quantitatively Managed covers both the organizational and project aspects of process stability and capability
- Stability and Capability are not just noble concepts, they have economic value and are about managing variation

The problem...

- The economic value of rendering processes stable and capable is often incalculable
- And, the return on investment of placing *more* processes under quantitative management likewise is indeterminable
- So, how to quantify the benefit?

Situations where variation manifests as schedule misses is a problem..

Schedule often is a major concern of Customers

- Projects miss committed delivery dates due to systematic underestimates of the effort to perform tasks
- Projects miss committed delivery dates due to poor execution and control of project tasks
- Missed delivery dates often have dire consequences

Northrop Grumman

The concept of failure costs...

Internal Failure Cost are the costs that result from a failure to...

"Do it right the first time."

- Defect correction
- Budget misses
- Processing discrepancy reports (DR's)
- Retesting
- Unscheduled downtime
- Inventory shrinkage
- Schedule misses
- Invoice errors
- Payroll errors
- Erroneous status reporting
- Lost data

Example...

- The Build Scheduling subprocess was put under Quantitative Management
- Same process used across several projects to determine schedule performance

Data were collected for 30 samples...

Build	±Days Early or Late	Build	± Days Early or Late	Build	± Days Early or Late
Build 1	28	Build 11	23	Build 21	89
Build 2	1	Build 12	20	Build 22	11
Build 3	-1	Build 13	19	Build 23	15
Build 4	10	Build 14	337	Build 24	12
Build 5	19	Build 15	58	Build 25	20
Build 6	5	Build 16	2	Build 26	4
Build 7	90	Build 17	53	Build 27	4
Build 8	2	Build 18	8	Build 28	13
Build 9	87	Build 19	10	Build 29	31
Build 10	11	Build 20	62	Build 30	95

Fairly clear that schedule performance is an issue

Histogram reveals the shape of the data...

Data that are not normal present analytic challenges

Further analysis shows the data to be a lognormal distribution...

Charting the data shows the process to be stable...

Stable processes lend themselves to improvement

The process is *not* capable...

Process Capability of Before+5

Using Box-Cox Transformation With Lambda = 0

An improvement team went to work...

- The team conducted a thorough Causal Analysis and Resolution
- They implemented a new Build Scheduling process

Data were collected for 30 new samples...

Build	± Days Early or Late	Build	± Days Early or Late	Build	± Days Early or Late
Build 31	-3	Build 41	35	Build 51	88
Build 32	-4	Build 42	177	Build 52	3
Build 33	4	Build 43	11	Build 53	22
Build 34	4	Build 44	7	Build 54	-2
Build 35	24	Build 45	17	Build 55	-2
Build 36	23	Build 46	-2	Build 56	4
Build 37	0	Build 47	9	Build 57	11
Build 38	28	Build 48	15	Build 58	-2
Build 39	-3	Build 49	5	Build 59	-2
Build 40	38	Build 50	3	Build 60	3

The performance looks better. But, by how much, and what dollar benefit?

The "After" process is still stable...

I Chart of After+5

Using Box-Cox Transformation With Lambda = 0.00

Build

Comparing the "Before" to the "After" shows a change in the data distribution...

Copyright 2005 Northrop Grumman Corporation

NORTHROP GRUMMAN

And more the process is more capable...

Process Capability of After+5

Using Box-Cox Transformation With Lambda = 0

Copyright 2005 Northrop Grumman Corporation

NORTHROP GRUMMAN

Next, compute the failure costs...

Days Late	Resources per Day	Labor Cost per Hour	probability	Failure Cost (Before)
1	40 hrs.	\$50	1.0%	\$124
2	40 hrs.	\$50	1.7%	\$816
:	:	:	:	:
140	40 hrs.	\$50	1.8%	\$15,523

- Compute the probability of each possible day late using the parameters from the fitted distributions
- Compute the daily failure cost: resource hours × labor rate
- Weight the daily failure costs by the probability
- Sum all the daily failure costs

RTHROP GRUMMAI

The revised process cuts failure cost almost in half...

Days Late	Resources per Day	Labor Cost per Hour	p(Before)	Overrun (Before)	p(After)	Overrun (After)
1	40 hrs.	\$50	1.0%	\$124	4.8%	\$1,908
2	40 hrs.	\$50	1.7%	\$816	6.3%	\$5,027
:	:	:	:	:	:	:
20	40 hrs.	\$50	1.8%	\$15,523	1.4%	\$11,581
:	:	:	:	:	:	:
140	40 hrs.	\$50	0.1%	\$3,473	0.0%	\$1,347
Cumulative Failure Cost				\$1,226K	>	\$728K
A net benefit						

NORTHROP GRUMMAN

of \$500K

Summary...

- The specific benefit from squeezing variation out of a process can be calculated using Cost of Quality principles and Six Sigma techniques
- Knowing the payoff makes further quantitative management compelling

