

Q-Labs Shaping your Processes for Competitive Advantage

Understanding "Why?"

David N. Card dca@q-labs.com

Based on D. Card, Understanding Causal Systems, Crosstalk, October 2004

United Kingdom France Germany Sweden United States

Agenda

- The Problem
- Basic Concepts
- **Defect Classifications**
- Causal Analysis in the CMM and **CMMI®**
- An Opportunity
- Summary

CMM and CMMI® are registered trademarks of Carnegie Mellon University

United Kingdom United States France Germany Sweden

The Problem

- Many of the potential benefits of measurement and analysis activities depend on effective causal analysis
- Causal analysis often produces superficial or no meaningful action, even in "mature" organizations

Examples of Weak Results

- Identified cause does not lead to any action
 - Bad data
 - Personnel issues
- Causes and actions are superficial
 - Defect rates from inspections are low, so reinspect
 - Defect rates from inspections are high, so orient the producer
- Only a small number of problems may result in false OOC signals or OBE (overcome by events) situations
- Tendency to stop at "first plausible explanation"

Contributors to the Problem

- Misunderstanding of basic concepts
 - Causality
 - Causal system
- Inadequate defect classification schemes
- Ad hoc causal analysis processes
 - Bad habits
 - Differences between CMM and CMMI

Causal Analysis

- Examination of information about problems, with
- Intent to identify causes of defects so that they can be prevented or detected earlier, or so that appropriate corrective action can be taken
- Many different approaches, called defect causal analysis or root cause analysis, employ many different techniques
- Performed in response to an anomaly or as part of a continual improvement program

Concept of Causality

- Conditions of causality
 - Cause and effect must demonstrate association or correlation
 - Cause must precede the effect in time
 - Mechanism by which the cause produces the effect must be identified
- Assignment of cause in a "humanintensive system" always includes a significant element of subjectivity

A Causal Relationship?

United States France Sweden United Kingdom Germany

Causal System

- Network of interacting factors that affect an outcome of interest
 - Causes may linked hierarchically or laterally — causes may be effects, too!
 - A vocabulary limited to cause and effect usually isn't sufficient for reasoning about a causal system

Terminology for Causal Analysis

- The *problem* is the critical issue
- Symptoms usually are the most readily visible consequences of the problem
- Causes contribute to the occurrence of the problem
- Systematic problems are those that repeat

Germany

Elements of a Causal System

Observations Cause Problem === Symptom Mitigating Corrective Preventive **Actions**

- Action may be taken on many different elements of a causal system
- Selecting the right action depends on the cost of the action and the expected impact on the system

United Kingdom United States France Germany Sweden

Defect Classifications

- Meaningful classifications are essential to identify trends and "systematic errors"
- Most common dimensions include:
 - when inserted (activity)
 - when found (activity)
 - type of error made
- Type of error may be specific to the work product or phase
- Classifications are intended as a tool for gaining insight
 - May require customization to problem domain
 - Must be understandable to engineers

"Ideal" Attributes of Classifications

- Orthogonal Dimensions
- Mutually Exclusive Categories within a **Dimensions**
- Objective Criteria for Assigning Categories
- Sensitivity to Behavior changes in behavior result in changes in meaures

Example Pareto Chart

Type of Defect

NASA Software Engineering Laboratory Classification

Causal Analysis Process

- Causal analysis assumed to be "intuitive"
- Processes, procedures, and tools often minimal
- Insufficient emphasis on ensuring that the right people participate
- CMM/CMMI-required "structure" added later

Relationship to CMM

- Level 4 Defect Causal Analysis
 - May be ad hoc, bad habit!
 - Performed in response to out of control situations
- Level 5 Defect Prevention
 - A Key Process Area (KPA) of CMM
 - Systematic approach required for DCA "in accordance with a documented procedure"
 - Performed even when process is in control
 - Additional planning and feedback requirements

Sweden United Kingdom United States France Germany

DP Planning

- Based on results of process performance analysis provided by (Quantitative Process Management (QPM), Software Quality Management (SQM), Process Change Management (PCM) activities
- Defines
 - Focus of DP activities (e.g., problem area)
 - Charter, composition, roles, and responsibilities of defect causal analysis team(s)
 - Charter, composition, roles, and responsibility of action team(s)
 - Schedules for phase kickoff meetings
- May not address all project activities and products

Phase Kickoff Meeting

- Provides regular feedback from DCA sessions
- Entire project staff participates
- Typical topics
 - Lessons learned (Dos and Don'ts) from previous projects and builds
 - Defect causal analysis and other process improvement activities to be conducted
 - Goals and objectives for this phase
 - Changes to methods and tools for this phase

Causal Analysis and Resolution

- CMMI Process Area at Level 5
- Differences from CMM DP
 - Phase Kick-off Meetings not addressed
 - Planning requirements relaxed (management versus technical plan)
 - Scope broadened to include all types of anomalies, not just defects
- DP provides the more challenging set of requirements

Relationship to Six Sigma

- Many causal analysis techniques provided in typical Six Sigma training programs (e.g, Error Modes and Effects Analysis)
- Defect prevention planning and team-based approach to DCA (CMM requirements) usually are not explicit elements of Six Sigma
- DP in the SW-CMM, and CAR in the CMMI, assume processes are defined; the need to define processes prior to DCA increases the time and effort required

Opportunity – IEEE 1044

- IEEE Standard 1044 Classification of Software Anomalies (1995)
- Working group established to revise this standard
- Goals of revision
 - Incorporate current concepts
 - Inspection defects
 - Orthogonal defect classification
 - Defect causal analysis
 - CMMI, Six Sigma, etc.
 - Extend to defect prevention and improvement from just problem management
- Some face-to-face meetings, but most work to be accomplished off-line

France Germany

Summary

- Regular and effective causal analysis is an essential element of any continuous improvement program
- Many concepts of causal analysis are misunderstood
- DP (CMM) and CAR (CMMI) requirements differ in some important ways
- Do causal analysis right from the start!
 - Training
 - Good classifications
 - Systematic process

France Germany

Bibliography

- Chillargee, R., and I. Bhandari, et. al. "Orthogonal Defect Classification - A Concept for In-Process Measurements." IEEE Transactions on Software Engineering, November 1992.
- Mays, R., et al., Experiences with Defect Prevention. IBM Systems Journal, January 1990
- Dangerfield, O., et al. "Defect Causal Analysis A Report from the Field." ASQC International Conference on Software Quality, October 1992.
- Yu, W. "A Software Fault Prevention Approach in Coding and Root Cause Analysi.", Bell Labs Technical Journal, April 1998.
- Card, D. "Learning from Our Mistakes with Defect Causal Analysis." IEEE Software, January 1998.
- Leszak, M., et al. "Classification and Evaluation of Defects in a Project Perspective." Journal of Systems and Software, April 2002.

France Sweden United Kingdom United States Germany

About Q-Labs

- Consulting and Appraisals in Software Measurement, CMM/CMMI, ISO 9000, SPICE, etc.
- **International Company**
 - France
 - Germany
 - Sweden
 - UK
 - USA
- 120 employees
- ISO 9001 Certified

- A broad international client base, e.g.
 - Alcatel, Bouygues Telecom, France Telecom, Orange
 - AXA, BNP Paribas, Banques **Populaires**
 - ABB, R. Bosch, EDF, IBM, Siemens, Schneider Electric, Thomson Detexis, Volvo, Sony
 - Atomic Energy Board of Canada, FAA, Norwegian Ministry of Justice, Swedish Civil Aviation Administration
 - Thales, Thomson, FMV, US Army TACOM