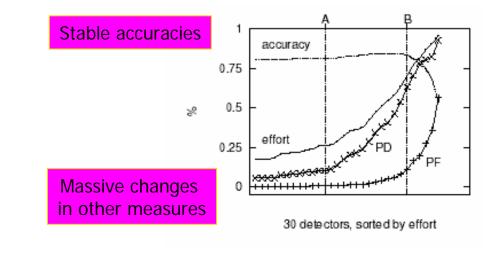
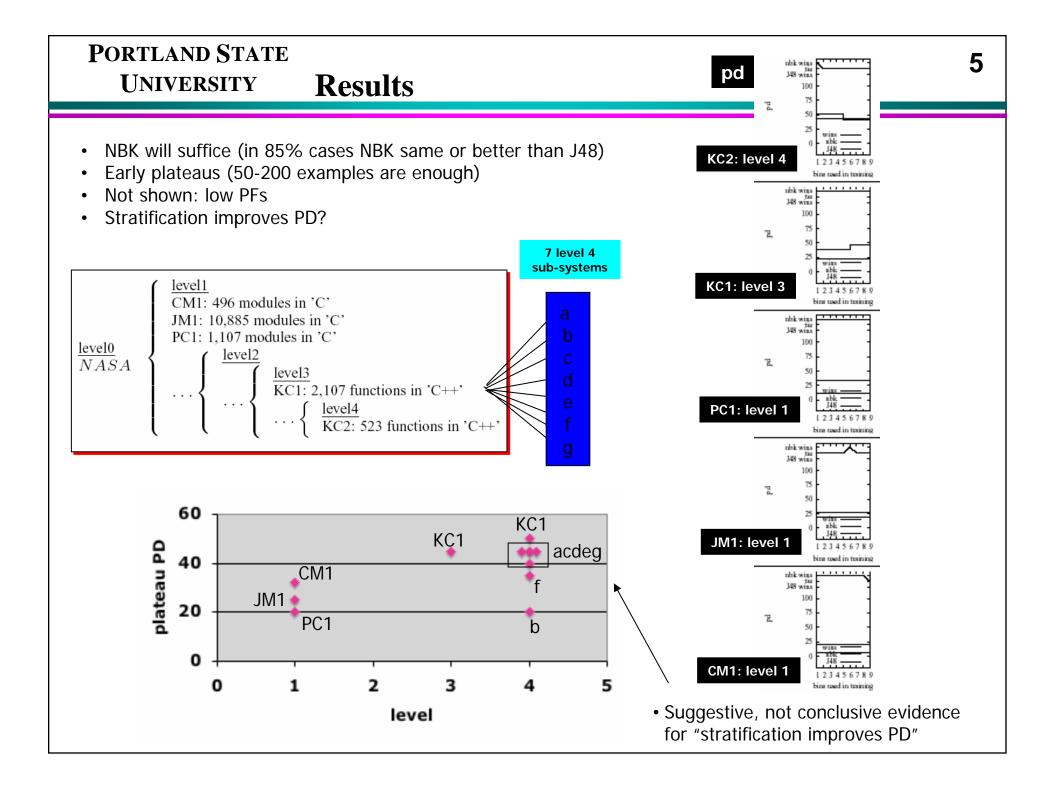
Evaluating the Impact of New Tools and Technologies Using Simulation

David M. Raffo, Ph.D., Portland State University Tim Menzies, Ph.D., Portland State University

Agenda

- Motivation
- Learned Defect Detectors Highlights
- Process Simulation Highlights
- Model Overview
- Three Scenarios and Results
- Conclusions


Motivation


- Good new technologies are wasted
 - unless there is a compelling business case to use them
- Without such a case:
 - Managers not convinced
 - No reallocation of scarce resources
- Good technology: data mining defect detectors
 - increased PDs (probability of detection)
 - Lower PFs (probability of false alarm)
 - Lower inspection effort (more time for other, more specialized methods
- This talk:
 - The business case
 - Developed via process simulation

PORTLAND STATE Data mining defect detectors UNIVERSITY Data mining defect detectors

- Data miners learn detect detectors from static code measures (McCabe and Halstead)at the module level.
 - Not perfect: widely deprecated (Shepherd, Fenton, and others)
 - Adequate as partial indicators (but watch that false alarm rate)

has o	nas defect								
No	Yes								
Α	В	detector silent							
C	D	detector triggered							
pd pf prec	= d/(b+d) pf = false alarms = c/(a+c)								

But, so what?

Is any of the above <u>useful</u>?

Introducing - Process Simulation

- One area that can help companies improve their processes is *Process Simulation*.
- Process Simulation supports organizations to address
 - Strategic management
 - Process Planning
 - Control and operational management
 - Technology adoption
 - Understanding
 - Training and learning
 - Quantitative process management and other CMMI-Based Process Improvement

Features of Process Simulation and PTAM

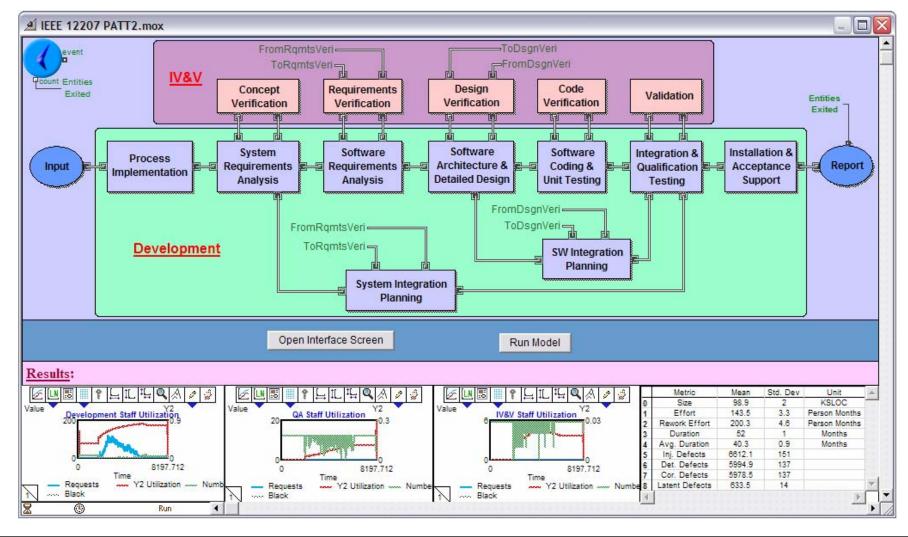
- Based on extensive research.
- Graphical user interface and models software
 processes
- Utilizes SEI methods to define SW Processes
- Integrates metrics related to cost, quality, and schedule into understandable performance picture.
- **Predicts project-level impacts** of process improvements in terms of cost, quality and cycle time
- Support business case analysis of process decisions - ROI, NPV and quantitatively assessing risk.
- Designed for Rapid Deployment

Importance/Benefits – Enduring Needs

- NASA Project Level
 - Software Quality Assurance Strategy Evaluation for NASA Projects
 - Independent Bottoms-Up NASA Project Cost Estimation (Going where COCOMO cannot – KSC project)
 - NASA Contractor Bid Evaluation (NASA IV&V integrated part of Planning and Scoping/Cost Estimation strategy)
 - Software Assurance Replanning
 - Cost/Benefit Evaluation of new technologies and tools

PORTLAND STATE 10 **UNIVERSITY** How it works Better Software Development Process **Process Decisions** Project is Approved FS Development Release to Unit Test Insp Func Spec Complete Customers Complete HLD H Lev Design Insp .Lev Design 🕨 Field **Process Performance** Inst Support Unit Code Functional and Test Code Dev Insp Test Cost, Quality, Schedule Maintenance Proposed System Create Insp Process Follow Test UT lut Change UT Pln Plan Plan **SW Process Simulation Model** Project is Approved pproved FS Development Unit Test Release to Complete Customers Complete **Project Data** H Lev Design Lev Desig Field Code Unit Functional **Process and** enanc Process Follow UT Pin UT **Product**

Goal


- In this presentation, we assess the impact of a new technology (i.e. Learned Defect Detectors) on a "typical" large-scale NASA project in terms of overall cost, quality and schedule performance
- Goal: To determine when the new technology might be *useful* and when they might be *useless* by providing a business case to support the adoption of these tools.

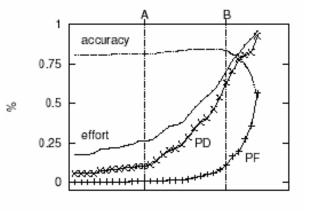
Business Case Questions

- What is the impact of applying new tools and technologies?
- What is the economic benefit or value of the tool or technology? What is the *Return on Investment*?
- Under what conditions does the tool or technology perform best? Under what conditions does it perform poorly?
- What performance standards does the tool need to achieve in order to have a positive performance impact on the project/organization?
- Are there alternative ways to apply the tool or technology that enable it to provide a more positive impact?

PORTLAND STATE UNIVERSITY

NASA Model – Includes IV&V Layer with IEEE 12207 Software Development Lifecycle

PORTLAND STATE UNIVERSITY

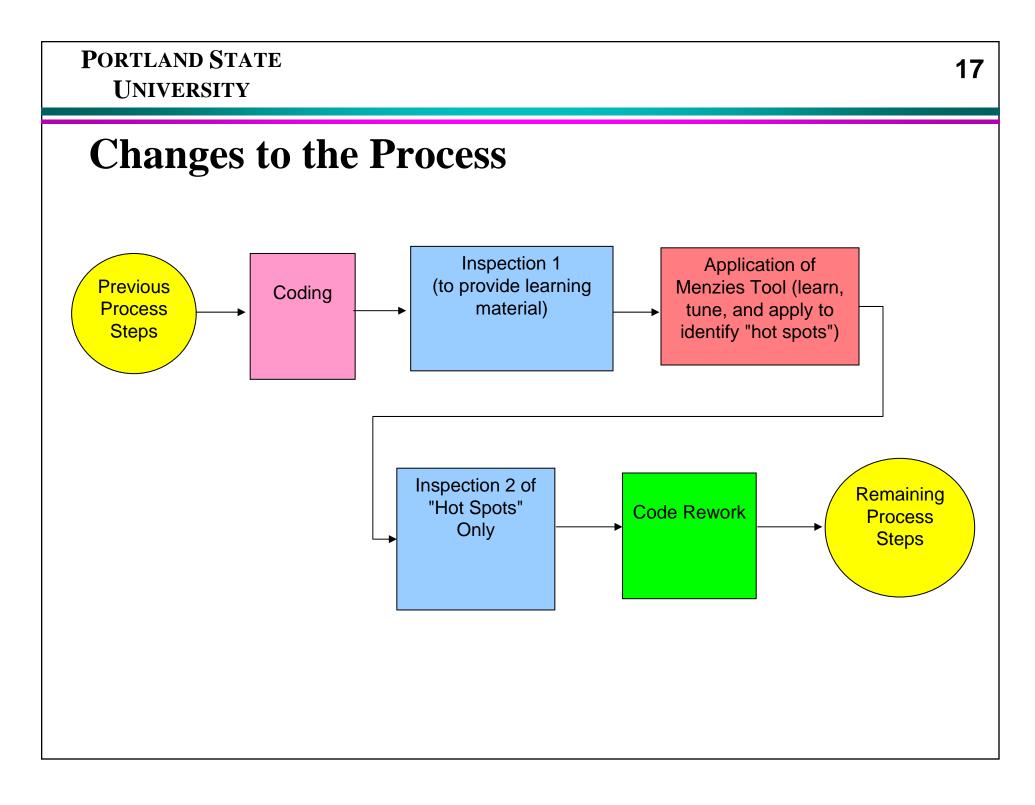

IV&V Layer – Select Criticality Levels for IV&V Techniques using pull-down menus

A Notebook - IEEE 12207 PATT2.mox												
		Concept Verification		Requirements Verification		Design Verification		Code Verification		Validation		
ID	IV&V Technique	Consequence	Error Potential	Consequence	Error Potential	Consequence	Error Potential	Consequence	Error Potential	Consequence	Error Potential	
1.1	Management and Planning of Independent Verification and Validation	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	
1.2	Issue and Risk Tracking	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	
1.3	Final Report Generation	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	
1.4	IV&V Tool Support	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	
1.5	Management and Technical Review Support	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	
1.6	Criticality Analysis	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	
1.7	Identify Process Improvement Opportunities in the Conduct of IV&V	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	None 🗸	
2.1	Reuse Analysis	None 🗸	None 🗸									
2.2	Software Architecture Assessment	None 🗸	None 🗸									
2.3	System Requirements Review	None 🗸	None 🗸									
3.1	Traceability Analysis – Requirements			None -	None 🗸							
3.2	Software Requirements Evaluation			None -	None -							
3.3	Interface Analysis – Requirements			None -	None 🗸							
3.4	System Test Plan Analysis			None 🗸	None 🗸							
4.1	Traceability Analysis – Design		0			None 🗸	None -					

PORTLAND STATE UNIVERSITY

Assumptions

- Project Size is 100 KSLOC.
- Software process follows the IEEE 12207+IV&V model. True for many DoD and NASA projects.
- %LOC Inspected=PD+5% to 10%; and %LOC is proportional to Effort
- PF = 10%-30%.
- PD=40 to 70%.



30 detectors, sorted by effort

- The PD rate assumes, in turn, that defect detectors are learned from data divided below the sub-system level.
- Standard manual inspections find 40% to 60% of the total defects.
- Perspective Based inspections find 80% to 90% of latent defects
- Defects uniformly distributed throughout code

Scenario I - Applying LDD to V&V

- Learned defect detectors are applied during project V&V.
 - Inspections are conducted on 11.5% of code to learn defect detectors
 - LDDs then applied to remaining code to identify highrisk portions of the system
 - Explored the impact of using higher PD combined with higher PF
 - Explored the impact of using regular inspections(weak training set) vs Perspective Based inspections (strong training set) for LDDs.

Scenario I - Results Summary

- Model recommendations for specific scenarios
- General Rule:

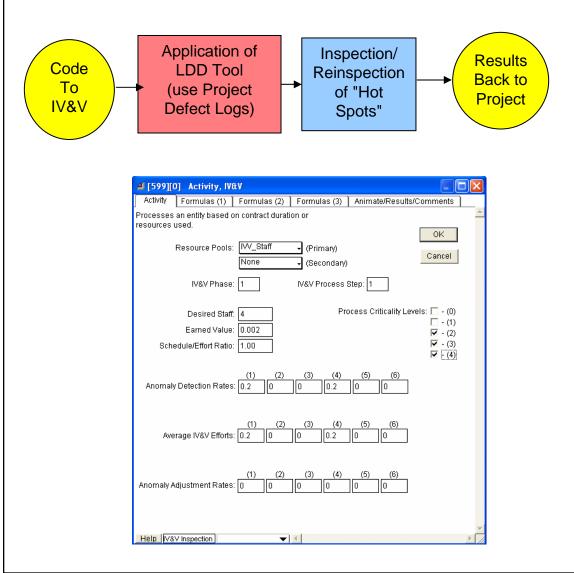
Insp Effect* %Code_Inspected*95%<= E_LDD* TS_IE Where:

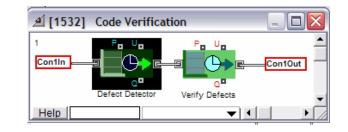
Insp Effect – Probability of detection of V&V inspections

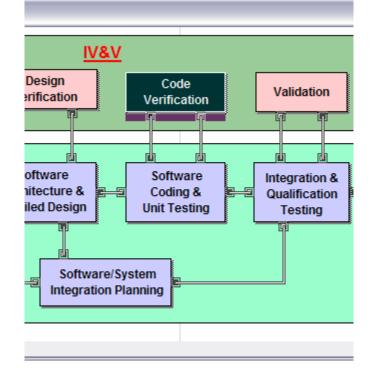
%Code_Inspected - % of code inspected during V&V

E_LDD – Probability of Detection for LDDs

TS_IE – Probability detection of Training Set inspections


Scenario I - Results Summary


- LDDs are Useful (Significant benefits) in a V&V setting when:
 - 53% or less of the code is inspected during V&V (manned vs unmanned missions) using regular inspections and LDD PD =50%
 - Using high PD mode and Perspective based inspections
 - Project inspections are poor
- Applying LDDs to V&V are **Useless** when:
 - Project inspections are good or high quality
 - More than 53% of the code is inspected by V&V (typical for manned missions)


Scenario II - Applying LDD to IV&V

- Learned Defect Detectors (LDD) applied to IV&V (Shedding light on blind spots)
 - Project generated training sets (regular inspections)
 - Investigated the Impact of applying LDD to different project types (varied amount of code that is reinspected (100%-25%))
 - Varied the effectiveness of reinspection (2%-10%)

Changes to the Process – IV&V

Scenario II - Results

- Clear recommendations for specific scenarios
- Results (Excellent Application):
 - -Low Risk = 1.2 PM with no defects detected
 - Improves quality if any defects are found (detection capability > 0)
 - Receive added assurance even if detection capability is 0
 - For Manned Missions, (100% reinspection), breakeven on total project effort if IV&V reinspection effectiveness = 2%
 - Significantly improves cost, quality and schedule if reinspection effectiveness is >= 5%

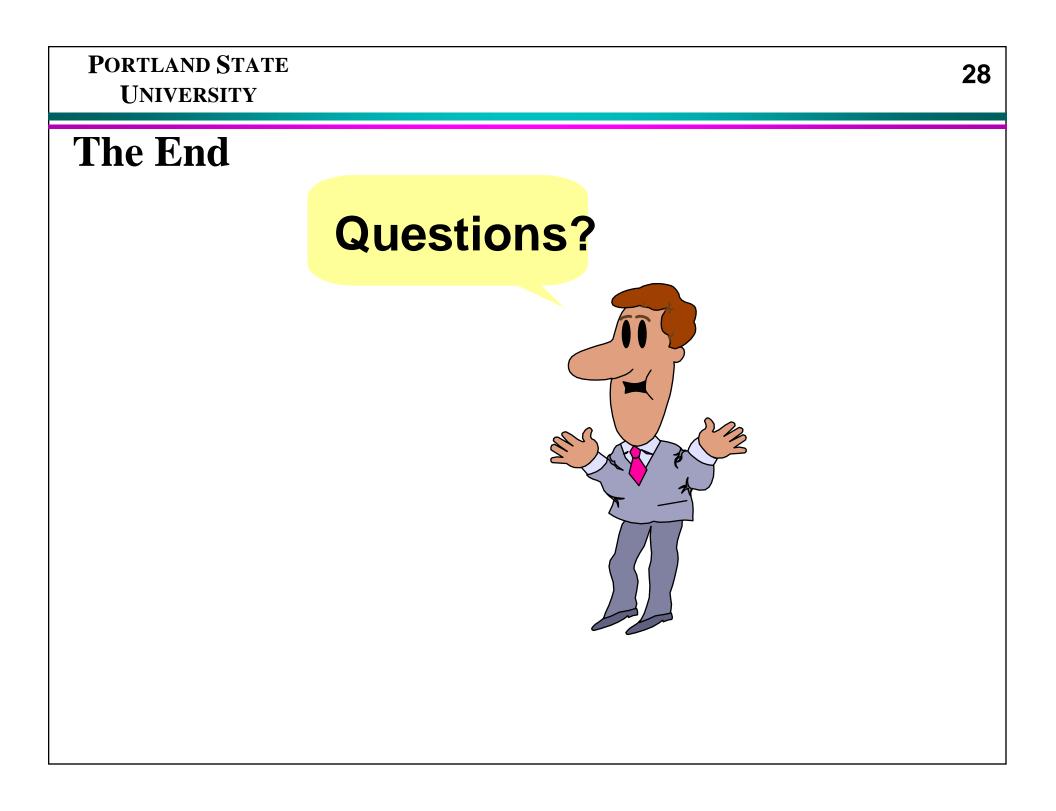
Scenario II - Results

- Significant up side potential when LDDs are used to identify high risk portions of the code that were not previously inspected during project level V&V (unmanned missions).
- At 50% code inspected by V&V, 4%-7.5% reduction in delivered defects
- At 25% code inspected during V&V, reductions in delivered defects range from 15%-24%. Effort savings range from 18 PMs to 29 PMs.

Conclusions

- Learned Defect Detectors are useful when they increase the overall detection capability of the Coding phase.
- General Rule:
- Insp Effect* %Code_Inspected*95%<= E_LDD* TS_IE
- This occurs when:
 - Less than 53% of code is inspected during V&V or V&V has week inspections
 - Used as IV&V technique identifying blind spots and augmenting regular high-quality V&V
 - -V&V has weak inspections

Conclusions


- Learned Defect Detectors are useless when they decrease the overall detection capability of the Coding phase.
- This occurs when:
 - Used to frivolously cut costs by replacing high quality code inspections.

Conclusions – Broader Impacts

- Identify the conditions under which application of a new technology would be beneficial and when applying this technology would not be beneficial.
- We can define *performance benchmarks* that a new tool or technology needs to achieve.

Conclusions – Broader Impacts

- We can diagnose problems associated with implementing a new tool or technology and identify new ways to apply the technology to the benefit of the organization (and the vendors)
- Finally, we can do all this **before** the technology is purchased or applied and therefore can save scarce resources available for process improvement.

Contact Information

David M. Raffo, Ph.D. Associate Professor, Portland State University Visiting Scientist, Software Engineering Institute

President, Vaiyu, Inc.

raffod@pdx.edu 503-725-8508 503-939-1720

