
October 24, 2005 Page 1 of 18

Software Size Growth and Uncertainty

Both Affect Estimate Quality and Project Risk
Mike Ross

Galorath Incorporated
100 North Sepulveda Boulevard

Suite 1801
El Segundo, California 90245

(480) 488-8366 (phone) (480) 488-8420 (fax)
mross@galorath.com http://www.galorath.com

Abstract. Examination of currently-accepted software cost, schedule, and
defect estimation algorithms reveals a common acknowledgment that
estimated software size is the single most influential independent variable.
Unfortunately, “The most important business decisions about a software
project are made at the time of minimum knowledge and maximum
uncertainty.” This includes minimum knowledge and maximum
uncertainty about a software product’s effective size at the time when
most estimating is done. Further complicating the issue of estimate
quality, in the author’s opinion, is the lack of a commonly-accepted
taxonomy. This paper proposes definitions for and the relationship
between two key attributes of software size estimates: growth and
estimation process variability, both being distributions, the dispersions of
which decrease as a function of project progress.

October 24, 2005 Page 2 of 18

Introduction

Purpose
This paper proposes definitions for and the relationship between two key attributes of
software size estimates: growth and estimation process variability, both being
distributions, the dispersions of which decrease as a function of project progress.

Scope
This paper focuses on handling size growth and variability with cost and schedule
estimation methods that employ parametric estimating techniques; however, in the
author’s opinion, these ideas could readily be extended to include any cost and
schedule estimation method. The issues, assumptions, and propositions presented in
this paper apply to all software development projects regardless of application domain
or Software Development Life Cycle (SDLC) paradigm.

Background
Examination of currently-accepted software cost, schedule, and defect estimation
algorithms reveals a common acknowledgment that assumed software size is the single
most influential independent variable. It follows then that assumed software size has a
significant impact on a given estimate’s quality or usefulness. Unfortunately, “The most
important business decisions about a software project are made at the time of
minimum knowledge and maximum uncertainty.”[5] This includes minimum knowledge
and maximum uncertainty about a software product’s effective size at the time when
most estimating is done [5]. Further complicating the issue of estimate quality, in the
author’s opinion, is the lack of a commonly-accepted taxonomy.

Relevant Taxonomy and Context

Software Development Taxonomy
Terms defined:1

■ Abstraction – A representation of an idea or concept expressed in a particular
medium or language.

■ Desire – A want or need.

1 Term definitions extracted from [5].

October 24, 2005 Page 3 of 18

■ [Software] Requirements – An abstraction of a desire for which computer
technology is thought to be a viable solution; the essence of a software product.

■ Software – An abstraction of a desire expressed as instructions and data in a
form that can be acted upon by a computer.

■ Process – A set of actions or operations conducing to an end [4].

■ Software Development Process – A generalized set of related activities that
transform desires into software.

■ Software [Development] Project – A specific instance of a software
development process.

■ Software Product – The primary (deliverable) result of a Software Development
Project; the implementation of a software product.

Software Development Process Context
Figure 1 depicts the context of a software development process; i.e., how it interfaces
with its environment. All instances of software development processes seek to
transform software requirements into a software product. To accomplish this
transformation, they consume energy in the form of labor (people doing work) from
project initiation to project completion. Since no software development process is a
perfect machine, it produces some amount of waste or entropy (undesired byproducts).

Desire Software

Labor

Start
Finish

Software
Development

Process

Technology

Friction

Desire SoftwareDesire Software

LaborLabor

Start
Finish

Start
Finish

Software
Development

Process

TechnologyTechnology

Friction

Figure 1: Software Development Context2

2 Figure reprinted with permission from Michael A. ROSS Consulting & Training. All rights reserved.

October 24, 2005 Page 4 of 18

Measuring the Software Development Process
The key to effectively and efficiently measuring the software development process is to
pick measures that quantify the process’s connections to its surrounding environment.
Just about any core set of software development process measures will include the
following:

■ Size – An abstraction’s mass, inertia, bigness (as it directly relates to the work
that must be done).

■ Duration – The elapsed calendar time between process initiation and process
completion.

■ Effort Cost, Staffing – People doing work during the software development
process and their associated cost, over elapsed calendar time.

■ Quality – Defect discovery and removal over elapsed calendar time.

Desire Software

Labor

Start
Finish

Effort
(person-months)

Size
(work units)

Size
(work units)

Defects
(count)

Time
(calendar months)

Software
Development

Process

Staffing
(people, time)

Cost
(currency)

Technology

Friction

Effective Technology
(coefficient)

Desire SoftwareDesire Software

LaborLabor

Start
Finish

Start
Finish

Effort
(person-months)

Effort
(person-months)

Size
(work units)

Size
(work units)

Size
(work units)

Size
(work units)

Defects
(count)

Defects
(count)

Time
(calendar months)

Time
(calendar months)

Software
Development

Process

Staffing
(people, time)

Staffing
(people, time)

Cost
(currency)

Cost
(currency)

TechnologyTechnology

Friction

Effective Technology
(coefficient)

Effective Technology
(coefficient)

Figure 2: Software Development Process Context with
Measurement3

A strong indication of the usefulness of these measures is the fact that they address the
most frequently asked questions about software development projects:

■ How big will the product be when delivered?
■ How long is it going to take?
■ How many people will be needed and when?

3 Figure reprinted with permission from Michael A. ROSS Consulting & Training. All rights reserved.

October 24, 2005 Page 5 of 18

■ How much will it cost?
■ How reliable will the product be when delivered?

Attributes of Estimated Software Size

Best Guess Size Estimate Defined
People generally think of software size as a count of the number of lines of code or the
number of function points that will eventually be contained by a to-be-developed
software product; this count representing some sort of best guess MS . Natural and
relevant questions should include, “What considerations are included, what
considerations are omitted, how confident are we in this best guess, how much
uncertainty surrounds this best guess, and how might this best guess change over
elapsed calendar time during the software development project?”

First of all, since we are concerned about how this best guess might change over
elapsed calendar time we change our best guess representation to be a function of
progress ()MS s where progress s in this context is defined to be normalized earned
value; i.e., the project starts at 0%s = complete and finishes at 100%s = complete [6].

Second, the mention above of confidence and uncertainty and the use of the term best
guess implies something that has a stochastic nature; i.e., there exists a set (a
distribution) of numerous possible outcomes, our best guess being but one element of
this distribution. We therefore postulate that a well-formed estimate is specified in terms
of a selected probability distribution and its attributes. It seems reasonable then to
assume that our best guess represents some sort of central tendency of its associated
distribution. It also seems reasonable to assume that this distribution is continuous
rather than discrete.4 The next set of questions are, “What kind of distribution are we
talking about (Uniform, Normal, Beta, Triangular, etc.) , what are its attributes
(location, dispersion, number of modes, skewness, kurtosis, etc.), and which form of
central tendency does this best guess represent (mean, median, mode, other)?”

Distribution Functions

There has been and continues to be much debate over which distribution function best
represents estimated software size uncertainty. The leading candidates for this honor
are (in no particular order):5

4 The author acknowledges that software size, being a count of something, could be viewed as discrete rather than as continuous; however,
since the range of possible outcomes is relatively large and the resolution of possible outcomes is relatively fine, the author chooses to view
the distribution as continuous.
5 Equations for these distributions and their attributes can be found at http://www.mathworld.wolfram.com.

October 24, 2005 Page 6 of 18

■ Normal (Gaussian) Distribution

■ Bi-Normal Distribution6

■ Triangular Distribution

■ Beta (special case of a Weibull) Distribution

Location (Central Tendency)

We have already suggested that a best guess represents some sort of central tendency
of its associated uncertainty distribution. Intuitively, of the three most common
measures of central tendency (mean, median, and mode), it is the mode that seems to
best represent the idea of a best guess. For example, I might say something like, “If I
were to run this project many times (approaching infinity), I believe, based on what I
know today, that a final size outcome of about 50,000 effective source statements would
happen more times than any other final size outcome. In other words, approximately
50,000 effective source statements is thought to be the most likely or mode value of our
size uncertainty distribution. It follows then that best guess and most likely are
synonymous within the context of this discussion. Mathematically, this value is the
global maximum of our size uncertainty distribution’s Probability Density Function
(PDF).

Dispersion

Of the three most common measures of dispersion; mean deviation, interquartile range,
and standard deviation σ ; the latter is almost invariably used by statisticians [2]. It is
defined as the square root of the second central moment 2m (variance) which, in turn, is
defined as the average of the squared deviations from the mean.

Modes, Skewness and Kurtosis

We make the simplifying assumption that the distributions representing element-level
contributors to uncertainty are unimodal; however, combinations of multiple distributions
can yield multimodal distributions.

Skewness (asymmetry to the left or right) and kurtosis (peakedness) are measured as
functions of the third and fourth central moments 3m and 4m respectively. Skewness is
presented here since most estimators agree that size uncertainty distributions are
asymmetric and tend to be right skewed (long tail on the right side of the PDF). Kurtosis
does not seem to be too much of an issue at this point; however, as more data is

6 Combines the left half of one Normal Distribution’s PDF having a standard deviation Lowσ with the right half of another Normal

Distribution’s PDF having a standard deviation Highσ in order to model skewness using Normal Distribution math.

October 24, 2005 Page 7 of 18

collected that can be used to relate size estimates with size outcomes, it may become
more relevant to describing the ideal size uncertainty distribution.

Uncertainty Defined
We now introduce an emerging model that defines the notion of uncertainty as a
function of variability, risk, and opportunity [3] and use the following conceptual model
as a guide for describing size uncertainty7.

()U V R O= Σ + Σ − Σ Eqn. 1

where:
U Uncertainty: a random variable representing the uncertainty about a

particular value or metric, expressed as a probability distribution of
possible outcomes.

V Variability: a random variable representing the impact on the
particular value or metric by an event or events that will occur
(probability of 1), expressed as a probability distribution of possible
outcomes.

R Risk: a random variable representing the impact on the particular
value or metric by a specific unfavorable event that may or may not
occur (there exists some known probability of occurrence).

O Opportunity: a random variable representing the impact on the
particular value or metric by a specific favorable event that may or
may not occur (there exists some known probability of occurrence).

Two Key Drivers of Software Size Estimates
Within the software estimation community and its serviced stakeholder organizations,
there has, for better or worse, evolved two sometimes complementary and sometimes
conflicting terms: size growth and size uncertainty. We propose the following definitions
for these two terms in the hope that some of the inherent conflict can be understood and
minimized.

■ Size Growth – Variability in the baseline estimated software size that results
from a change in the common understanding of the required functionality and/or
the context in which the software development project and its resultant software
product exist. Note that we do not characterize size growth as a risk in our

7 Use of the summation symbols in the conceptual relationship is intended to show aggregation of multiple contributing random variables,
each of which may be multivariate in nature. The summation symbols do not imply that simple arithmetic addition is appropriate; it is more
likely that simulation techniques such as Monte Carlo will be required to properly evaluate the contributors to uncertainty.

October 24, 2005 Page 8 of 18

model. We assume that size growth will occur and that it embodies the impact of
those events not yet known and specified (not yet characterized as
risks/opportunities). Note also that we have narrowed the focus of the term size
growth to one of a technological and programmatic nature. This definition implies
the desirability to find some sort of growth factor function that can predict
additional size and its associated uncertainty. As the project matures, we expect
that risks and opportunities will become known and specified and, therefore,
removed from consideration as a part of variability. This implies a desire to
express growth factor as a function of progress on a given project.

■ Size (Estimation) Uncertainty – Variability that results from the stochastic
nature of human behavior and model behavior associated with the software size
estimation process. Note that we have narrowed the focus of the term size
uncertainty (hereinafter referred to as size estimation variability) to one of
process rather than to one that could be assumed to encompass all estimated
size uncertainty; i.e., size growth and size estimation variability are mutually
exclusive. Size estimation variability is described by a specific distribution
(including its attributes) of possible software size impacts given some common
understanding of the required functionality and of the context in which the
software development project and its resultant software product exist.

Size Growth

Software project management would be a whole lot simpler if we knew, from the
beginning, precisely how big the software will end up being. Issues of efficiency would
then be the sole source of cost and schedule uncertainty. Unfortunately, static software
size is not reality. A rare project experiences no requirements changes and no
expansion of scope. This is a serious issue since variations in software size have the
single largest influence on software development time, effort, cost, staffing, and the
number of delivered defects [5].

We have previously stated that size growth stems from context volatility. In order to
understand these notions of size growth and context volatility we must understand its
source. If one were to solicit a list of things that cause software size to grow it might
include some of the following:

■ The customer doesn’t know what he/she wants.

■ The customer doesn’t understand the problem.

■ The mission has changed.

■ The regulations that govern how this software should behave have changed.

■ The vendor added a few extra features that he/she thought the customer would
like.

October 24, 2005 Page 9 of 18

■ The vendor finished early so the customer and/or the vendor thought up a few
things to add.

Analysis of the preceding list suggests the following possible organization of issues that
influence software size growth:

■ Operational Environment Volatility

■ Essence (Requirements) Volatility

■ Essence Understanding (Requirements Completeness and Correctness)

■ Essence versus Implementation Correspondence

All of the preceding issues seem to fall into either the Technical or the Programmatic
Risk8 Driver categories per [1].

We earlier suggested the desire for a growth factor function that can predict additional
size as a function of progress on a given project. Analysis of historical data collected by
Galorath Incorporated suggests that this growth factor function ()G s is linear and is
approximately:

()G 0.7 0.69s s= − + Eqn. 2

For example, if we assume that a project’s normalized earned value when Software
Requirements Analysis is complete (at Software Requirements Review or SRR) to be
11.8%, then9:

() ()G 11.8% 0.7 11.8% 0.69 0.61SRRG = = − + = Eqn. 3

Since we have already judged the issues impacting size growth to be technical or
programmatic in nature, we assume that our size growth factor distribution can best be
represented as a Triangular Distribution per [1] described by the parameter vector

()sG :

() [] ()0 0 Gs L M H s= = G Eqn. 4

where L is the lowest conceivable growth factor value, M is the most likely (mode)
growth factor value, and H is the highest conceivable growth factor value [7]10. If our

8 Note that this usage of the term Risk is not consistent with our uncertainty model but, rather, refers to terminology used in the cited
document.
9 Note that this example is consistent with the results documented in [7].

10 The results of [7] suggest 0 L M H= < < . To preserve consistency with our system of distributions we have transformed the results

in [7] to force 0M L= = while maintaining the total area under the Triangular Distribution PDF.

October 24, 2005 Page 10 of 18

best guess of software size at SRR 50,000M_SRRS = effective source statements (based
on the current common understanding when Software Requirements Analysis is
complete of the required functionality and of the current common understanding of the
technology to be applied), then the size growth implication distribution is a Triangular
Distribution described by the parameter vector ()sGS :

() () () () ()
() []

M MS 0 0 S G

0 0 0.61 0 0 30,500M_SRR

s s s s s

S

= =
 = =

G

G_SRR

S G

S

Eqn. 5

The Probability Density Function (PDF) for a Triangular Distribution is given by:

()

()
()() []

()
()() []

2

Triangular 2

2
 for x ,

P
2

1 for x ,

x L
L M

H L M L
x

H x
M H

H L H M

 −
∈

− −=
− − ∈ − −

Eqn. 6

The Cumulative Distribution Function (CDF) for a Triangular Distribution is given by:

()

()
()() []

()
()() []

2

Triangular 2

 for x ,
D

1 for x ,

x L
L M

H L M L
x

H x
M H

H L H M

 −
∈

− −=
− − ∈ − −

Eqn. 7

The Probability Density Function (PDF) and the Cumulative Distribution Function (CDF)
for the Triangular Distribution described by ()sGS are graphed below in Figure 3 and
Figure 4 respectively.

October 24, 2005 Page 11 of 18

PDF
Probability Density versus Software Size

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0 5000 10000 15000 20000 25000 30000 35000

Software Size (effective source statements)

Pr
ob

ab
ili

ty
 D

en
si

ty

Figure 3: PDF of a Triangular Distribution Described by ()sGS

CDF
Confidence Probability versus Software Size

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000 25000 30000 35000

Software Size (effective source statements)

C
on

fid
en

ce
 P

ro
ba

bi
lit

y

Figure 4: CDF of a Triangular Distribution Described by ()sGS

October 24, 2005 Page 12 of 18

Size Estimation Variability

Because, until project completion, software size must be estimated, it follows that
software size is uncertain, regardless of whether or not we recognize size growth. The
very nature of the word estimate implies uncertainty. We assume uncertainty in this
context to mean that there exists some distribution (with specific attributes) of possible
software size outcomes. Therefore, in order to quantify size estimation variability we
must define this distribution and its attributes. Size estimation process and model
variability are best represented by a Normal (Gaussian) Distribution [1]. We assume,
based on [7], a () ()M30% S s± conceivable range of this distribution; conceivable being
defined as 2.33σ± (between the 1st to the 99th percentiles).

Continuing our example situation, if our best guess of software size at SRR is
50,000M_SRRS = effective source statements (based on the current common

understanding when Software Requirements Analysis is complete of the required
functionality and of the current common understanding of the technology to be applied),
then the amount of additional estimated software size due to size estimation variability
is a Normal Distribution described by the parameter vector ()sEVS :

() [] () ()
()()

()
()() []

M30% S
0

2 2.33

30%
0 0 3, 219

2 2.33
M_SRR

s
s

S

µ σ

= =

= =

EV

EV

S

S

Eqn. 8

where µ is the arithmetic mean of the distribution (in effective source statements) and
σ is the standard deviation of the distribution (also in effective source statements). Note
that we specify µ to be 0 in order to center the distribution about 0 , the left half
(negative) representing size decrease due to estimation variability, the right half
(positive) representing size increase due to estimation variability.

The Probability Density Function (PDF) for a Normal (Gaussian) distribution is given by:

()
()

()
2

22
Normal

1P for ,
2

x

x e x
µ

σ

σ π

− −

= ∈ −∞ ∞
Eqn. 9

There exists no closed form representation of the Cumulative Distribution Function
(CDF) for a Normal (Gaussian) Distribution; however, Microsoft® Excel contains a built-
in approximation function for this purpose. Additionally, a reasonable second order
polynomial approximation is given by:

October 24, 2005 Page 13 of 18

()

(]

[)

(]

[)

2

Normal
2

0.01 for , 2.33

0.0903 0.4207 0.5 for 2.33 ,

D 0.5 for

0.0903 0.4207 0.5 for , 2.33

0.99 for 2.33 ,

x

x x x

x x

x x x

x

µ σ

µ µ µ σ µ
σ σ

µ

µ µ µ µ σ
σ σ

µ σ

 ∈ −∞ −

− − + + ∈ − ≈ =
 − − − + + ∈ +
 ∈ + ∞

Eqn. 10

The Probability Density Function (PDF) and the Cumulative Distribution Function (CDF)
for the Normal Distribution described by ()sEVS are graphed below in Figure 5 and
Figure 6 respectively.

PDF
Probability Density versus Software Size

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

-10000 -5000 0 5000 10000

Software Size (effective source statements)

Pr
ob

ab
ili

ty
 D

en
si

ty

Figure 5: PDF of a Normal Distribution Described by ()sUS

October 24, 2005 Page 14 of 18

CDF
Confidence Probability versus Software Size

0%

20%

40%

60%

80%

100%

-10000 -5000 0 5000 10000

Software Size (effective source statements)

C
on

fid
en

ce
 P

ro
ba

bi
lit

y

Figure 6: CDF of a Normal Distribution Described by ()sUS

Combining Size Growth and Size Estimation Variability

Based on our definitions of size growth and of size estimation variability, we can sum
our best guess size estimate ()MS s , our size growth, a Triangular Distribution described

by ()sGS , and our size estimation variability, a Normal Distribution described by ()sEVS ;
the result being our estimated size distribution of unknown type and described by the
parameter vector () []s µ σ=S , µ being its arithmetic mean and σ being its standard
deviation. In order to solve for µ and σ we can take advantage of two statistical
theorems as described in [2] and [1], one for expectation E that yields µ and one for
variance V that yields 2σ . Each can be applied to a series of independently11
distributed random variables iX :

()
1 1

E E
n n

i i
i i

X X
= =

 =

∑ ∑ Eqn. 11

and

()
1 1

V V
n n

i i
i i

X X
= =

 =

∑ ∑ Eqn. 12

11 Independence is a necessary prerequisite for the variance theorem; however, it is not a necessary prerequisite for the expectation (mean)
theorem.

October 24, 2005 Page 15 of 18

Given our series of independent random variables ()MS s , ()sGS , ()sEVS :

() ()

()
() () () ()

()

() () () () () ()()

M MS

M M

MM
M

S

0 0 S G S G
3 3

0

S G 3S G
S

3 3

s

s

s

s

s

s s s s

s ss s
s

µ

µ

µ

µ

=

+ +
= =

=

+
∴ = + =

G

EV

S

S

S

Eqn. 13

and

()

()
() ()()

()
()

()()

()
() ()() ()

()()

MS

2
2 2 2

M

M

2 2
M M

0

S G
18 18

(30%)S
2 2.33

S G (30%)S
18 2 2.33

s

s

s

s

s sL M H LH LM MH

s

s s s

σ

σ

σ

σ

=

+ + − − −= =

=

∴ = +

G

EV

S

S

S

Eqn. 14

Continuing our example size estimate taken at SRR where our best guess
50,000M_SRRS = and our size growth factor 0.61SRRG = :

() ()
()()

() ()()() ()
()()

[]

2 2

2 2

3 (30%)
3 18 2 2.33

50,000 0.6150,000 0.61 3 (30%) 50,000
3 18 2 2.33

60,167 7,877

M_SRR SRRM_SRR SRR M_SRRS GS G S + = +
 + = +

∴ =

SRR

SRR

SRR

S

S

S

Eqn. 15

We now know the mean or expected value (60,167 effective source statements) and
standard deviation (7,877 effective source statements) of the statistical sum of the three
contributors to our size estimate. If this were one small component in a larger whole
consisting of many components, then we could take advantage of the Central Limit
Theorem “which states that the sum of a large number of independent random
variables will be approximately normally distributed almost regardless of their

October 24, 2005 Page 16 of 18

individual distributions.”[2] Unfortunately, we don’t have a large number of
independent random variables in this example; thus, if we wish to extract probability /
confidence information from our size estimate distribution, we are left with a problem
that is best solved by a calculator or a software product that uses simulation.

Summary and Conclusion

Purpose Revisited
This paper proposed definitions for and the relationship between two key attributes of
software size estimates: growth and estimation process variability, both being
distributions, the dispersions of which decrease as a function of project progress.

Areas for Further Study
The following are suggestions for furthering the discussion of software size growth and
uncertainty:

■ Collect more (and more continuous) size estimation data and use it to strengthen
size growth factor functions.

■ Investigate making the conceivable range of the size estimation variability
distribution be a function of project progress (i.e., factor in the notion of project
maturity and associated learning).

■ Investigate relevant methods and techniques, avoiding simulation, that provide
probability / confidence information from distributions that are the statistical sum
of a small number of constituent distributions (i.e., the resulting distribution is
unlikely to be a Normal Distribution).

References
[1] Book, S.A., “Cost-Risk Computations by Hand Calculator”; Proc. SCEA National

Conference & Educational Workshop, The Society of Cost Estimating and
Analysis, Scottsdale, AZ, June 2002.

[2] Bulmer, M.G., Principles of Statistics, Dover Publications, Inc., New York, NY,
1979.

[3] Hutchings, Christopher, “Risk is not a four letter word!”, Proposed Seminar:
Galorath Inc., El Segundo, CA, 2005.

[4] Mish, F. (Editor in Chief), Merriam-Webster’s Collegiate Dictionary, Tenth
Edition, Merriam-Webster, Incorporated, Springfield, MA, 1999.

October 24, 2005 Page 17 of 18

[5] Ross, M., “Managing Software Size,” Proc. Joint ISPA / SCEA 2003 Conference,
The International Society of Parametric Analysts and The Society of Cost
Estimating and Analysis, Orlando, FL, June 2003.

[6] Ross, M., “Parametric Project Monitoring and Control,” Proc. Joint ISPA / SCEA
2005 Conference, The International Society of Parametric Analysts and The
Society of Cost Estimating and Analysis, Denver, CO, June 2005.

[7] Tarbet, D., “Software Cost/Schedule Estimation: Code Growth,” Internal White
Paper: Galorath Inc., El Segundo, CA, 2002.

October 24, 2005 Page 18 of 18

Biography
Michael A. Ross has over 30 years of practical experience in software engineering as a
developer, manager, process champion, consultant, instructor, and award-winning
international speaker.

Mr. Ross is currently the Chief Engineer of Galorath Incorporated, makers of the SEER
suite of estimation tools, where, for the past three years, he has been responsible for
the advancement and realization of the technology aspects of Galorath’s mission and
vision.

Prior to joining Galorath, Mr. Ross was Vice President of Education Services for
Quantitative Software Management, Inc. (makers of the SLIM suite of software
estimating tools). He was responsible for the development and delivery of all QSM
training. During his seven-year tenure with QSM, he served as one of the company’s
primary consultants and analysts working with Fortune 500 companies and government
agencies in the areas of software measurement, sizing, estimating, tracking,
forecasting, and benchmarking.

Mr. Ross, during 17 years with Honeywell Air Transport Systems (formerly Sperry Flight
Systems) and 2 years with Tracor Aerospace, developed or managed the development
of embedded software for avionics systems installed various commercial airplanes
including the Boeing 737-500, 757, 767, 777, the Douglas MD-11, the Lockheed L1011-
500, the British Aerospace BAe-146, the Airbus A320; and for expendable
countermeasures systems installed in various military aircraft and missiles. He also co-
founded Honeywell Air Transport Systems’ process improvement team (later to become
its SEPG), served as its focal for software project management process improvement,
and served as a Honeywell corporate SEI CMM assessor.

Mr. Ross did his undergraduate work at the United States Air Force Academy and
Arizona State University, receiving a Bachelor of Science in Computer Engineering. He
is a member of the Project Management Institute (PMI), the Institute of Electrical and
Electronics Engineers (IEEE), the International Function Points Users Group (IFPUG),
the International Society of Parametric Analysts (ISPA), the Society of Cost Estimating
and Analysis (SCEA), the Arizona Software Association, and the Phoenix area Software
Process Improvement Network.

