

October 24, 2005 Page 1 of 36 Rev D

Parametric Project Monitoring and Control

Performance-Based Progress Assessment and Prediction
Mike Ross

Galorath Incorporated
100 North Sepulveda Boulevard

Suite 1801
El Segundo, California 90245

(480) 488-8366 (phone) (480) 488-8420 (fax)
mross@galorath.com http://www.galorath.com

Abstract. Performance Measurement (an integral part of Earned Value
Management (EVM)) has, over at least the last two decades, become a
gold standard process (i.e., best practice) for monitoring and controlling
the progress of software development projects. It employs the
fundamental measurement-based command/feedback principals of control
theory to increase the probability that a project’s actual performance
matches its expected (planned) performance; i.e., that a project is
delivered on time and within budget or, at least, that there is an early
warning of looming disaster. This process is generally well-understood by
project managers and reasonably well supported by commercially-
available tools. Experience with this process suggests an opportunity for
significant process improvement by including established estimation
methodology and algorithms as part of the forecasting and re-baselining
activities performed during the project monitoring and control process.
This paper first reviews the fundamentals of software project management
and of Performance Measurement (including some proposed extensions
to the notion of earning value) and then proposes a process called
Parametric Project Monitoring and Control (PPMC) whereby accepted
algorithms currently used for software cost and schedule estimation during
the project planning process are incorporated into the forecasting and re-
baselining processes to yield a more-realistic time-range prediction of the
project’s cost and duration.

October 24, 2005 Page 2 of 36 Rev D

Introduction

Purpose
The purpose of this paper is to first review the fundamentals of software project
management and of Performance Measurement (including some proposed extensions
to the notion of earning value) and then to propose a process called Parametric Project
Monitoring and Control (PPMC) whereby accepted algorithms currently used for
software cost and schedule estimation during the project planning process are
incorporated into the Estimate at Completion (EAC) calculation to yield a more-realistic
time-range prediction of the project’s cost and duration.

Scope
This paper applies to the project management aspects of the software development
process; particularly to those Level 2 process areas referred to in the Carnegie Mellon
University Software Engineering Institute’s (SEI) Capability Maturity Model® Integration
(CMMI™) for Project Planning, Project Monitoring and Control, and Measurement and
Analysis [1]. While the scope and focus of this paper is the software development
process, one could imagine how these ideas can be readily applied to hardware and
system development as well.

Background
Performance Measurement (an integral part of Earned Value Management (EVM)) has,
over at least the last two decades, become a gold standard process (i.e., best practice)
for monitoring and controlling the progress of software development projects. It employs
the fundamental measurement-based command/feedback principals of control theory to
increase the probability that a project’s actual performance matches its expected
(planned) performance; i.e., that a project is delivered on time and within budget or, at
least, that there is an early warning of looming disaster. This process is generally well-
understood by project managers and reasonably well supported by commercially-
available tools. Experience with this process suggests an opportunity for significant
process improvement by including established estimation methodology and algorithms
as part of the forecasting and re-baselining activities performed during the Project
Monitoring and Control process.

Software Project Management
The primary purpose of the software project management process is to ensure that its
associated software development project is successful. Success, within this context, is

October 24, 2005 Page 3 of 36 Rev D

assumed to mean achieving or exceeding expectations; i.e., success occurs when the
actual outcome matches (within a reasonable tolerance) the expected outcome [4].

The above definition of success, by virtue of its reference to expectations, implies the
need for some sort of roadmap or plan; i.e., some sort of description of these
expectations in terms of who, what, when, where, how, and why. It follows, then, that
one of the software project management process’s primary activities should be
planning.

Assuming correspondence between expectations and some sort of project plan, we can
now assert that success occurs when the actual outcome matches this plan (within
some reasonable tolerance). Ensuring that the actual outcome matches the plan must,
therefore, be of primary concern to the software project management process. Ensuring
this match implies influencing the actual outcome and/or changing the plan; therefore,
one of the software project management process’s primary activities should be
controlling.

Influencing the actual outcome is typically achieved by careful initialization, direction,
and correction of the software development process and of the environment in which it
is performed. Since the software development process is fueled primarily by labor
(people), one of the software project management process’s primary activities should be
resourcing. Since software development is, indeed, a process, it involves methods,
skills/expertise, tools, and task flow. Therefore, the set of software project management
process primary activities should also include organizing, training, and equipping.

Finally, once the project is complete, we must deliver the product, determine whether or
not the project was a success, and learn from all that was measured and experienced
during the project. We therefore suggest that one of the software project management
process’s primary activities should be transitioning; transitioning the project’s product to
the consumer and transitioning the project’s knowledge and experience to the next
project(s).

A useful mental device for remembering the above-described software project
management process primary activities is the fact that the first letter of each activity
name forms the word PROTECT.

■ Planning – estimating, scheduling

■ Resourcing – interviewing, hiring, motivating

■ Organizing – establishing interpersonal communication paths and rules,
mapping resources to tasks

■ Training – teaching, mentoring

■ Equipping – acquiring and allocating equipment, tools, materials, supplies,
products etc.

■ Controlling – directing, measuring, correcting and/or replanning

October 24, 2005 Page 4 of 36 Rev D

■ Transitioning – delivering, reviewing, analyzing, archiving

The software project management process, by ensuring project success, is protecting
the sponsoring organization’s investment in the project. Or, perhaps (I can’t resist
injecting a little gallows humor here), it is protecting the software project manager’s job.

Mapping Software Project Management to the CMMI
If we slightly reorganize our PROTECT model such that the planning and controlling
activities each subsume the appropriate aspects of resourcing, organizing, training,
and equipping, then we are left with three top-level activities: planning, controlling, and
transitioning. These three activities can be one-to-one mapped with the Level 2 CMMI™
process areas for Project Planning, Project Monitoring and Control, and
Measurement and Analysis. Figure 1 depicts a proposed context model that illustrates
the relationships between these process areas.

Figure 1: Software Project Management Process Areas Context

The following subordinate sections represent an abbreviated summary of each software
project management related Level 2 CMMI™ process area.1

Project Planning

The purpose of Project Planning is to establish and maintain plans that define project
activities.

1 Information in each subordinate section was extracted from (CMMI® Product Team 2002). Note that the institutionalization-related
goals/practices have been omitted for brevity.

October 24, 2005 Page 5 of 36 Rev D

Establish Estimates

Estimate the Scope of the Project

Establish Estimates of Work Product and Task Attributes

Define Project Life Cycle

Determine Estimates of Effort and Cost

Develop a Project Plan

Establish the Budget and Schedule

Identify Project Risks

Plan for Data Management

Plan for Project Resources

Plan for Needed Knowledge and Skills

Plan Stakeholder Involvement

Establish the Project Plan

Obtain Commitment to the Plan

Review Plans that Affect the Project

Reconcile Work and Resource Levels

Obtain Plan Commitment

Project Monitoring and Control

The purpose of Project Monitoring and Control is to provide an understanding of the
project’s progress so that appropriate corrective actions can be taken when the project’s
performance deviates significantly from the plan.

Monitor Project Against Plan

Monitor Project Planning Parameters

Monitor Commitments

Monitor Project Risks

Monitor Data Management

Monitor Stakeholder Involvement

Conduct Progress Reviews

Conduct Milestone Reviews

October 24, 2005 Page 6 of 36 Rev D

Manage Corrective Action to Closure

Analyze Issues

Take Corrective Action

Manage Corrective Action

Measurement and Analysis

The purpose of Measurement and Analysis is to develop and sustain a measurement
capability that is used to support management information needs.

Align Measurement and Analysis Activities

Establish Measurement Objectives

Specify Measures

Specify Data Collection and Storage Procedures

Specify Analysis Procedures

Provide Measurement Results

Collect Measurement Data

Analyze Measurement Data

Store Data and Results

Communicate Results

Fundamentals of Software Development

Software Development Taxonomy
Terms defined:2

Abstraction – A representation of an idea or concept expressed in a particular medium
or language.

Desire – A want or need.

[Software] Requirements – An abstraction of a desire for which computer technology
is thought to be a viable solution; the essence of a software product.

Software – An abstraction of a desire expressed as instructions and data in a form that
can be acted upon by a computer.

2 Term definitions extracted from [4].

October 24, 2005 Page 7 of 36 Rev D

Process – A set of actions or operations conducing to an end [3].

Software Development Process – A generalized set of related activities that transform
desires into software.

Software [Development] Project – A specific instance of a software development
process.

Software Product – The primary (deliverable) result of a Software Development
Project; the implementation of a software product.

Software Development Process Context
Figure 2 depicts the context of a software development process; i.e., how it interfaces
with its environment. All instances of software development processes seek to
transform software requirements into a software product. To accomplish this
transformation, they consume energy in the form of labor (people doing work) from
project initiation to project completion. Since no software development process is a
perfect machine, it produces some amount of waste or entropy (undesired byproducts).

Desire Software

Labor

Start
Finish

Software
Development

Process

Technology

Friction

Desire SoftwareDesire Software

LaborLabor

Start
Finish

Start
Finish

Software
Development

Process

TechnologyTechnology

Friction

Figure 2: Software Development Context3

3 Figure reprinted with permission from Michael A. ROSS Consulting & Training. All rights reserved.

October 24, 2005 Page 8 of 36 Rev D

Measuring the Software Development Process
The key to effectively and efficiently measuring the software development process is to
pick measures that quantify the process’s connections to its surrounding environment.
Just about any core set of software development process measures will include the
following:

Size – An abstraction’s mass, inertia, bigness (as it directly relates to the work that must
be done).

Duration – The elapsed calendar time between process initiation and process
completion.

Effort Cost, Staffing – People doing work during the software development process
and their associated cost, over elapsed calendar time.

Quality – Defect discovery and removal over elapsed calendar time.

Desire Software

Labor

Start
Finish

Effort
(person-months)

Size
(work units)

Size
(work units)

Defects
(count)

Time
(calendar months)

Software
Development

Process

Staffing
(people, time)

Cost
(currency)

Technology

Friction

Effective Technology
(coefficient)

Desire SoftwareDesire Software

LaborLabor

Start
Finish

Start
Finish

Effort
(person-months)

Effort
(person-months)

Size
(work units)

Size
(work units)

Size
(work units)

Size
(work units)

Defects
(count)

Defects
(count)

Time
(calendar months)

Time
(calendar months)

Software
Development

Process

Staffing
(people, time)

Staffing
(people, time)

Cost
(currency)

Cost
(currency)

TechnologyTechnology

Friction

Effective Technology
(coefficient)

Effective Technology
(coefficient)

Figure 3: Software Development Process Context with
Measurement4

A strong indication of the usefulness of these measures is the fact that they address the
most frequently asked questions about software development projects:

How big will the product be when delivered?
How long is it going to take?
How many people will be needed and when?

4 Figure reprinted with permission from Michael A. ROSS Consulting & Training. All rights reserved.

October 24, 2005 Page 9 of 36 Rev D

How much will it cost?
How reliable will the product be when delivered?

Progress Defined

Transforming Desires to Software
The fundamental goal (i.e., the root of progress) associated with the software
development process is the transformation of a mass of knowledge articulated as a
desire into a mass of knowledge articulated as software. While this transformation may,
in actuality, exist in a space of many dimensions and directions (bordering on chaotic),
we choose to focus on a single dimension we will call progress, the axis or direction of
which we will call s .

Progress Position and Change
Within dynamic systems, the concept of position is typically used to quantify location
within some space relative to some selected reference point. Position is typically
represented as a vector quantity; i.e., it consists of both magnitude and direction from
some given reference point or point of origin. We have already assumed that our
system has only one relevant dimension which we have named progress. Within the
progress dimension, we will establish the initial position of the mass of knowledge
articulated as a desire (the initial state of the transformation) as being the point of origin
of measurement and will measure position relative to this point in the s direction (along
the s axis). We will further assume that our system is restricted to the positive side of
the s axis; i.e., we will assume the notion of negative position to be undefined.5

Normalized Earned Value
Since our system is a transformation from one tangible state (the desire) to another
tangible state (the software) with intermediate states being somewhat intangible, we
choose unity (1 or 100% complete) to represent the position of the transformation at
completion. As previously stated, the initial position of the transformation is assumed to
be zero (0% complete). We define any value that represents a specific position on the
continuum of intermediate position values as normalized earned value. In other words, if
a project’s position in the direction of progress is 0.5 (50% complete), then that project’s
normalized earned value is said to be 0.5 or 50%. If a project has been assigned

5 The author acknowledges that this assumption is open to challenge; i.e., that it might be necessary to account for the notion of project
digression beyond the initial state. The author, however, chooses to take the more positive viewpoint that what appears, on the surface, to be
digression, is actually part of the necessary learning process that is key to any development activity. In other words, while it might not be
obvious at the time, you are always better off today than you were yesterday.

October 24, 2005 Page 10 of 36 Rev D

(estimated to be) some budgeted monetary value (measured in units of currency) or
some budgeted effort value (measured in units of labor), then the project’s earned value
may be expressed as the product of its normalized earned value and its total budgeted
monetary value or total budgeted effort value respectively.

Closely related to position is the concept of displacement, which is typically used to
quantify some change in position. It too is typically represented as a vector quantity.
Displacement can be described mathematically as [2]:

1 2 2 1(,) () ()t t t t≡ −∆r r r Eqn. 1

where:

1t Some initial point in time.

2t Some final point in time where 2 1t t≥ .

1()tr The initial position vector; the position vector at time 1t .

2()tr The final position vector; the position vector at time 2t .

1 2(,)t t∆r The displacement vector from the initial position to the final position.

Within the progress dimension s , the magnitude of the displacement vector, 1 2(,)t t∆r ,
quantifies a change in normalized earned value from the position at some time 1t to the
position at some later time 2t .

A Review of Performance Measurement Relationships
This section contains a brief definition and description of relevant Performance
Measurement relationships. Considering the three forms of earned value introduced in
the preceding section (monetary, effort, and normalized), we include equations for each
of these three unit systems (currency, labor, and % of BAC) where meaningful to do
so.

Budget at Completion (BAC)
The starting point or anchor measure for Performance Measurement is the Budget at
Completion (BAC). This measure is a primary output of the estimation process and
represents what is expected to be spent by the project. The plan that is associated with
this value is generally referred to as the Baseline Plan or simply the Baseline. Note that
in the normalized unit system, BAC is always assumed to be unity (1 or 100%). Note
also that the currency and labor variants of this value may change during the course of
a project as the result of re-planning or re-baselining.

October 24, 2005 Page 11 of 36 Rev D

For units of currency:

$
1

Activity Planned Cost
n

i
i

BAC
=

≡∑ Eqn. 2

Where:
n The total number of activities in the project.

For units of labor:

1
Activity Planned Effort

n

L i
i

BAC
=

≡∑ Eqn. 3

Where:
n The total number of activities in the project.

For a normalized (% of BAC) measurement system:

% (,) 1 100%start finishBAC t t≡ ≡ =∆r Eqn. 4

Three Fundamental Cost of Work Measures
Performance Measurement requires that, for a given amount of elapsed calendar time
t , we know:

How much we’ve planned to spend,

How much we’ve earned (progressed), and

How much we’ve actually spent.

Budgeted Cost of Work Scheduled (BCWS)

Value of the work planned to be done – also known as the Planned Value (PV).

For units of currency:

()$
1

BCWS Activity Planned Cost
n

j
j

t
=

≡∑ Eqn. 5

Where:

October 24, 2005 Page 12 of 36 Rev D

Activity j Must, in order to count, be planned for completion by time t .

n Total number of activities in the project.

For units of labor:

()
1

BCWS Activity Planned Effort
n

L j
j

t
=

≡∑ Eqn. 6

Where:

Activity j Must, in order to count, be planned for completion by time t .

n Total number of activities in the project.

For a normalized (% of BAC) measurement system:

() () ()$
%

$

BCWS BCWS
BCWS L

L

t t
t

BAC BAC
≡ ≡ Eqn. 7

Budgeted Cost of Work Performed (BCWP)

Value of the work earned (accomplished) – also known as the Earned Value (EV).

For units of currency:

()$
1

BCWP Completed Activity Planned Cost
m

l
l

t
=

≡∑ Eqn. 8

Where:

Activityl Must, in order to count, be complete by time t .

m Total number of complete activities in the project.

For units of labor:

()
1

BCWP Completed Activity Planned Effort
m

L l
l

t
=

≡∑ Eqn. 9

Where:

Activityl Must, in order to count, be complete by time t .

m Total number of complete activities in the project.

October 24, 2005 Page 13 of 36 Rev D

For a normalized (% of BAC) measurement system:

() () ()$
%

$

BCWP BCWP
BCWP (0,) L

L

t t
t t

BAC BAC
≡ ≡ ≡∆r Eqn. 10

Actual Cost of Work Performed (ACWP)

Actual amount spent to accomplish the work – Actual Cost (AC).

For units of currency:

()$
1

ACWP Activity Actual Accumulated Cost
n

k
k

t
=

≡∑ Eqn. 11

Where:
n Total number of activities in the project.

For units of labor:

()
1

ACWP Activity Actual Accumulated Effort
n

L k
k

t
=

≡∑ Eqn. 12

Where:
n Total number of activities in the project.

For a normalized (% of BAC) measurement system:

() () ()$
%

$

ACWP ACWP
ACWP L

L

t t
t

BAC BAC
≡ ≡ Eqn. 13

Fundamental Variances

Cost Variance (CV)

Difference between earned and spent. Positive values are favorable, negative values
are unfavorable.

For units of currency:

() () ()$ $ $CV BCWP ACWPt t t≡ − Eqn. 14

October 24, 2005 Page 14 of 36 Rev D

For units of labor:

() () ()CV BCWP ACWPL L Lt t t≡ − Eqn. 15

For a normalized (% of BAC) measurement system:

() () ()% % %CV BCWP ACWPt t t≡ − Eqn. 16

Schedule Variance (SV)

Difference between earned and planned. Positive values are favorable, negative values
are unfavorable.

For units of currency:

() () ()$ $ $SV BCWP BCWSt t t≡ − Eqn. 17

For units of labor:

() () ()SV BCWP BCWSL L Lt t t≡ − Eqn. 18

For a normalized (% of BAC) measurement system:

() () ()% % %SV BCWP BCWSt t t≡ − Eqn. 19

Additional Variances

Budget Variance (BV)

Difference between planned and actual. Positive values are favorable, negative values
are unfavorable.

For units of currency:

() () ()$ $ $BV BCWS ACWPt t t≡ − Eqn. 20

For units of labor:

October 24, 2005 Page 15 of 36 Rev D

() () ()BV BCWS ACWPL L Lt t t≡ − Eqn. 21

For a normalized (% of BAC) measurement system:

() () ()% % %BV BCWS ACWPt t t≡ − Eqn. 22

Time Variance (TV)

Difference in elapsed calendar time between time now and time where plan function
equals earned function evaluated at time now. Positive values are favorable, negative
values are unfavorable.

For units of elapsed calendar time:

() () () ()$ $ % %BCWS BCWP BCWS BCWP BCWS BCWPTV
L Lt t t tt t t t t t t= = =≡ − ≡ − ≡ − Eqn. 23

For a normalized (% of BAC) measurement system:

() ()

()

()

()

()

()

$ $ % %

$ $ % %

BCWS BCWP BCWS BCWP BCWS BCWP
%

BCWS BCWP BCWS BCWP BCWS BCWP

TV L L

L L

t t t

t t t

t t t t t t
t

t t t
= = =

= = =

− − −
≡ ≡ ≡ Eqn. 24

Fundamental Performance Indices

Cost Performance Index (CPI)

Amount earned to amount spent ratio; cost efficiency achieved from project start to time
t . Values greater than unity are favorable, values less than unity are unfavorable.

() ()
()

()
()

()
()

$ %

$ %

BCWP BCWP BCWP
CPI

ACWP ACWP ACWP
L

L

t t t
t

t t t
≡ ≡ ≡ Eqn. 25

Schedule Performance Index (SPI)

Amount earned to amount planned ratio; schedule efficiency achieved from project start
to time t . Values greater than unity are favorable, values less than unity are
unfavorable.

October 24, 2005 Page 16 of 36 Rev D

() ()
()

()
()

()
()

$ %

$ %

BCWP BCWP BCWP
SPI

BCWS BCWS BCWS
L

L

t t t
t

t t t
≡ ≡ ≡ Eqn. 26

Additional Performance Indices

Budget Performance Index (BPI)

Amount planned to amount spent ratio; budget efficiency achieved from project start to
time t . Values greater than unity are favorable, values less than unity are unfavorable.

() ()
()

()
()

()
()

$ %

$ %

BCWS BCWS BCWS
BPI

ACWP ACWP ACWP
L

L

t t t
t

t t t
≡ ≡ ≡ Eqn. 27

Time Performance Index (TPI)

Time efficiency achieved from project start to time t . Values greater than unity are
favorable, values less than unity are unfavorable.

() () () ()$ $ % %BCWS BCWP BCWS BCWP BCWS BCWPTPI L Lt t tt t t
t

t t t
= = =≡ ≡ ≡ Eqn. 28

Composite Performance Index (XPI)

Combined cost and schedule efficiency achieved from project start to time t . Values
greater than unity are favorable, values less than unity are unfavorable.

() () ()XPI CPI SPIt t t≡ Eqn. 29

Status and Forecasting Metrics

Percent Complete

%Percent Complete BCWP≡ Eqn. 30

October 24, 2005 Page 17 of 36 Rev D

Percent Spent

%Percent Spent ACWP≡ Eqn. 31

Estimate at Completion (EAC)

Expected (predicted) actual cost value when normalized earned value reaches 100%.

EAC Based on Cost Variance (Basic)

For units of currency:

() ()$ $ $EACbasic CVt BAC t≡ − Eqn. 32

For units of labor:

() ()EACbasic CVL L Lt BAC t≡ − Eqn. 33

For a normalized (% of BAC) measurement system:

() ()% % %EACbasic CVt BAC t≡ − Eqn. 34

EAC Based on Cost Performance

For units of currency:

() ()
$

$EACcpi
CPI
BAC

t
t

≡ Eqn. 35

For units of labor:

() ()EACcpi
CPI

L
L

BACt
t

≡ Eqn. 36

For a normalized (% of BAC) measurement system:

() ()
%

%EACcpi
CPI
BACt

t
≡ Eqn. 37

October 24, 2005 Page 18 of 36 Rev D

EAC Based on Composite Performance

For units of currency:

() ()
$

$EAC xpi
XPI
BAC

t
t

≡ Eqn. 38

For units of labor:

() ()EAC xpi
XPI

L
L

BACt
t

≡ Eqn. 39

For a normalized (% of BAC) measurement system:

() ()
%

%EAC xpi
XPI
BACt

t
≡ Eqn. 40

Estimate to Complete (ETC)

The expected additional work that must be done to achieve a normalized earned value
of 100%.

For units of currency:

() ()$ $ $ETC BCWPt BAC t≡ − Eqn. 41

For units of labor:

() ()ETC BCWPL L Lt BAC t≡ − Eqn. 42

For a normalized (% of BAC) measurement system:

() () ()% % % %ETC BCWP 100% BCWPt BAC t t≡ − = − Eqn. 43

Variance at Completion (VAC)

Difference between planned and predicted. Positive values are favorable, negative
values are unfavorable.

October 24, 2005 Page 19 of 36 Rev D

VAC Based on Cost Performance

For units of currency:

() ()$ $ $VACcpi EACcpit BAC t≡ − Eqn. 44

For units of labor:

() ()VACcpi EACcpiL L Lt BAC t≡ − Eqn. 45

For a normalized (% of BAC) measurement system:

() ()% % %VACcpi EACcpit BAC t≡ − Eqn. 46

VAC Based on Composite Performance

For units of currency:

() ()$ $ $VACxpi EACxpit BAC t≡ − Eqn. 47

For units of labor:

() ()VACxpi EACxpiL L Lt BAC t≡ − Eqn. 48

For a normalized (% of BAC) measurement system:

() ()% % %VACxpi EACxpit BAC t≡ − Eqn. 49

To Complete Performance Index (TCPI)

Ratio of work remaining against money remaining (efficiency which must be achieved to
complete the remaining work with the expected remaining money).

October 24, 2005 Page 20 of 36 Rev D

TCPI Based on Cost Variance (Basic)

() ()
() ()

()
() ()

()
() ()

$ $

$ $

% %

% %

BCWPWork RemainingTCPIbasic
Cost Remaining EACbasic ACWP

BCWP

EACbasic ACWP

BCWP
EACbasic ACWP

L L

L L

BAC t
t

t t

BAC t
t t

BAC t
t t

−
≡ ≡ ≡

−

−
≡

−

−
−

Eqn. 50

TCPI Based on Cost Performance

() ()
() ()

()
() ()

()
() ()

$ $

$ $

% %

% %

BCWPWork RemainingTCPIcp
Cost Remaining EACcpi ACWP

BCWP

EACcpi ACWP

BCWP
EACcpi ACWP

L L

L L

BAC t
t

t t

BAC t
t t

BAC t
t t

−
≡ ≡ ≡

−

−
≡

−

−
−

Eqn. 51

TCPI Based on Composite Performance

() ()
() ()

()
() ()

()
() ()

$ $

$ $

% %

% %

BCWPWork RemainingTCPIxp
Cost Remaining EACxpi ACWP

BCWP

EACxpi ACWP

BCWP
EACxpi ACWP

L L

L L

BAC t
t

t t

BAC t
t t

BAC t
t t

−
≡ ≡ ≡

−

−
≡

−

−
−

Eqn. 52

Average Performance

Average of work accomplished on the project from the actual start time _A startt , defined
as the earliest time t′ where ()%ACWP 0t′ > , to time t .

For units of currency:

() ()$
$

_

BCWP
PA

A start

t
t

t t
≡

−
 Eqn. 53

October 24, 2005 Page 21 of 36 Rev D

For units of labor:

() ()$

_

BCWP
PAL

A start

t
t

t t
≡

−
 Eqn. 54

For a normalized (% of BAC) measurement system:

() ()%
%

_

BCWP
PA

A start

t
t

t t
≡

−
 Eqn. 55

Average Expected Performance to Finish

Average of the work which must be accomplished to complete the project at the
baseline finish time _BL finisht , defined as the earliest time t′ where ()%BCWS 1 100%t′ = = .

For units of currency:

() ()$ $
$

_

BCWP
PE

BL finish

BAC t
t

t t
−

≡
−

 Eqn. 56

For units of labor:

() ()
_

BCWP
PE L L

L
BL finish

BAC t
t

t t
−

≡
−

 Eqn. 57

For a normalized (% of BAC) measurement system:

() ()% %
%

_

BCWP
PE

BL finish

BAC t
t

t t
−

≡
−

 Eqn. 58

Parametric Project Monitoring and Control (PPMC)

PPMC Vision
For at least the last two decades, software development projects have benefited from
various time-proven techniques for estimating the duration and effort of software

October 24, 2005 Page 22 of 36 Rev D

development projects. Unfortunately for most projects, the estimation process occurs
only once, at the beginning of the project, at a time when the least is known about what
the project should be. In the very worst of cases, when a project subsequently gets into
trouble, the trouble goes unnoticed until the inevitable late delivery with associated cost
overrun. This open-loop process behavior is illustrated in Figure 4 below.

Figure 4: No Project Control

The typical first step in trying to get projects under control is the introduction of a
measurement and metrics process (e.g., Performance Measurement) which, by itself,
supports a minimal although ad-hoc project control capability as shown in Figure 5
below.

Figure 5: Ad-hoc Project Control

Next, and what represents the current status quo, is the introduction of tools that
schedule tasks and allocate resources as some function of inter-task dependencies,
resource availability, and priority. These tools can accept measures from a Performance
Measurement process and make any necessary schedule adjustments. The typical
strategy is to re-baseline the project by identifying all of the incomplete tasks in the
project plan as a subproject and slipping the schedule of the entire subproject (as a
whole) to begin on the current date nowt (see Figure 6 below).

October 24, 2005 Page 23 of 36 Rev D

Software
Development

Process
Estimating Scheduling DirectingDesire

Measuring

Figure 6: Partial Project Control

The problem with this strategy is that it does not take into account that which may be
causing the project to be in trouble in the first place; namely that expected performance
(efficiency or productivity) is not matching actual performance. Instead, we are
perpetuating a possibly erroneous assumption about performance which may come
back to bite us again. We therefore propose including established estimation
methodology and algorithms as part of the prediction and re-baselining activities
performed during the Project Monitoring and Control process and refer to this process
as Parametric Project Monitoring and Control (PPMC). The idea is to extend the scope
of software development project estimation to include situations where the project is
already under way and where some project actuals already exist.6

In order to realize the vision of PPMC, we propose including estimation in the project
monitoring and control loop (see Figure 7 below).

Software
Development

Process
Estimating Scheduling DirectingDesire

Measuring

Figure 7: Full Project Control

6 It is important to note that PPMC is not intended as a replacement for but rather as complementary to the Earned Value Management (EVM)
process.

October 24, 2005 Page 24 of 36 Rev D

Extending the Notion of Quantifying Progress (Earning Value)
Within the realm of Performance Measurement, one criticism that routinely surfaces is
the sometimes arbitrary manner in which progress or value (percent complete) is
credited to activities within a project or to the project as a whole. The result of this
arbitrariness is sometimes referred to as the “90% complete 90% of the time” syndrome.
This paper proposes a four-dimensional (4-D) approach for assigning progress to the
development of each program/application (Computer Software Configuration Item
(CSCI)) that is part of the project. The first dimension is Software Development Life
Cycle (SDLC) primary activity completion for the development of a specific
program/application (CSCI). Each SDLC primary activity7, in turn, is assigned progress
according to a weighted combination of three other dimensions: artifact completion,
milestone completion, and defect discovery / removal.

Program/Application (CSCI) Progress

()%BCWP t for each program/application (CSCI) is computed as the normalized
weighted sum of the applicable SDLC primary activities’ completion percentage. The
weighting scheme is directly derived from the effort-to-activity allocation defined in the
project’s baseline plan.

SDLC Primary Activity Completion

During the project monitoring and control process, the completion percentage for each
SDLC primary activity is computed as the normalized weighted sum of its artifacts
completed, its milestones completed, and its associated number of defects discovered
and defects removed.

Artifact Completion

As part of the project planning process, a list of artifact types is identified and each type
is assigned to the appropriate SDLC primary activity. Each artifact type is weighted
according to its relative contribution to the completion of its associated primary activity.
Additionally, as part of the project planning process, the total number of artifacts of each
type is estimated for each program/application (CSCI). These totals are used to
determine the relative weighted contribution of each completed artifact to the completion
of its associated SDLC primary activity.

During the project monitoring and control process, the total number of completed
artifacts of each type are periodically and/or aperiodically measured and recorded.

7 An example of a set of SDLC primary activities is System Requirements Design, Software Requirements Analysis, Preliminary Design,
Detailed Design, Code & Unit Test, Component Integration & Test, Program Test, System Integration thru Operational Test & Evaluation.
There are various SDLCs, each with its own unique set of primary activities.

October 24, 2005 Page 25 of 36 Rev D

Milestone Completion

As part of the project planning process, a list of milestones (events) is identified and
each is assigned to the appropriate SDLC primary activity. Each milestone is weighted
according to its relative contribution to the completion of its associated primary activity.

During the project monitoring and control process, milestone completion state is
periodically/aperiodically determined and recorded.

Defect Discovery / Removal

As part of the project planning process, an estimate is made for each
program/application (CSCI) of its total theoretical number defects. This body of defects
is then twice distributed over elapsed calendar time; once according discovery and once
according to removal. The body of defects is also proportionally distributed across the
set of SDLC primary activities according to each activity’s corresponding effort
allocation. The total number of defects allocated to each SDLC primary activity is used
to determine the relative weighted contribution of each discovered and removed defect
to the completion of its associated SDLC primary activity.

During the PPMC process, the total numbers of discovered and of removed defects for
each SDLC primary activity are periodically/aperiodically measured and recorded.

At-a-Glance Status Indication of Measures and Metrics
The traffic signal metaphor has become a fairly commonplace strategy to indicate Work
Breakdown Structure (WBS) individual task status (red, yellow, green). Since status can
be tracked as a function of elapsed calendar time, the notion of status is often-times
supplemented by the inclusion of status trend (better, no change, worse). We propose
to extend this strategy to include several measures and metrics associated with each
program/application (CSCI) that are managed as part of PPMC. These measures and
metrics include:8

Cost Variance and Cost Performance Index

Schedule Variance and Schedule Performance Index

Budget Variance and Budget Performance Index

Time Variance and Time Performance Index

Size Growth [4]

Size Uncertainty Convergence [4]

Defect Discovery Variance

Defect Removal Variance

8 This is an evolving list of measures and metrics and is expected to grow as experience is gained applying PPMC to real projects.

October 24, 2005 Page 26 of 36 Rev D

Control Limits
Earlier in this paper we defined success to mean achieving or exceeding expectations
and asserted that success occurs when the actual outcome matches, within a
reasonable tolerance, the expected outcome. In the preceding section we proposed
quantifying measurement and metric status using the traffic signal metaphor with trend
supplement. In order to realize the traffic signal metaphor for a given measure or metric,
we must define all the transitions between green and yellow and between yellow and
red. We propose to call these transitions control limits and include them as part of our
PPMC process in order to link the notion of reasonable tolerance to the notion of status.

We now propose the following definition for the set of control limits associated with a
particular measure or metric where the particular measure or metric can be expressed
as a function of elapsed calendar time:9

_ _
_ _
_ _
_ _

control_limit_set upper_yellow to red_control_limit
upper_green to yellow_control_limit
lower_green to yellow_control_limit
lower_yellow to red_control_limit

≡

Eqn. 59

[]
_ _upper_yellow to red_control_limit control_limit_segment

control_limit_segment
≡

K
 Eqn. 60

[]
_ _upper_green to yellow_control_limit control_limit_segment

control_limit_segment
≡

K
 Eqn. 61

[]
_ _upper_yellow to red_control_limit control_limit_segment

control_limit_segment
≡

K
 Eqn. 62

[]
_ _upper_yellow to red_control_limit control_limit_segment

control_limit_segment
≡

K
 Eqn. 63

_ _
_

control_limit_segment starting month number
scale factor
offset

≡

Eqn. 64

Note that _ _ 0starting month number = indicates both a null control_limit_segment and
the last control_limit_segment in a list.

The control_limit_segment function ()u j it for the thj control_limit_segment of a particular
control_limit in a _control_limit set associated with a particular measure or metric that is

9 The author acknowledges that the “perfect” control limit schema would allow specification as any function of elapsed calendar time. The
proposed schema represents a compromise between flexibility and computational complexity.

October 24, 2005 Page 27 of 36 Rev D

a function of elapsed calendar time ()m it and evaluated at the thi month into the project
is defined as:

() () ()u mj i j i jt a t b= + Eqn. 65

Where:
m One more than the count of whole months in the range startt to finisht

where m ∈ ¥ .
n The count of control limit segments in a particular control limit where

n ∈ ¥ .
i Month number where []1,i m∈ ∩¥ .

j Control limit segment index where []* 0,j n∈ ∩¢

it Quantum elapsed calendar time from startt to i months into the project.

ja Scale factor of the thj control limit segment.

jb Offset of the thj control limit segment; must be scaled in the same
units as is ()m it .

()m it A particular measure or metric defined as a function of elapsed
calendar time it .

()u j it
thj control limit segment value for a particular control limit as a function

of elapsed calendar time it .

Performance-Based Forecasting and Re-Baselining
At the heart of the PPMC vision is the desire to forecast the final project outcome. We
have already proposed the idea of including the estimation process and all of its
algorithmic strength in the forecasting process. The question now becomes, “How can
we do that?” The following subordinate sections contain a set of process steps that
support the creation of a new project plan (estimate) that, by its nature, represents a
performance-based forecast and, therefore, represents a reasonable new baseline plan
(re-baseline). A strategic goal of PPMC is to eventually automate as many steps in this
process as are reasonably possible.

October 24, 2005 Page 28 of 36 Rev D

Step 1: Start a New Estimate

Use the current baseline as the starting point for a new estimate.

Step 2: Update Size Estimate

Revisit all of the assumptions (Basis of Estimate) associated with the current estimate of
and uncertainty around software size. Include other sizing techniques, if appropriate, in
order to improve sizing accuracy. Make changes where appropriate.

Step 3: Update Technology Assumptions

Revisit all Knowledge Base and technology parameter assumptions that formed the
Basis of Estimate for the current baseline. Align Knowledge Base selections and
technology parameter settings with what has actually happened to date on the project.
Make changes where appropriate.

Step 4: Update Schedule Assumptions

Revisit the project start date and any assumptions about the time-effort tradeoff solution
(i.e., minimum time versus optimal effort, schedule constraints, etc.). Make any changes
where appropriate.

Step 5: Update Staffing Assumptions

Specify staffing constraints from project start to time now that match (as close as
possible) the actual staffing profile to date. Revisit future staffing assumptions from time
now and make adjustments where appropriate.

Step 6: Update Labor Rate and FTE Assumptions

Revisit all labor rates as well as the definition of a Full Time Equivalent person (typically
specified as number of labor-hours per labor-month). Make any changes where
appropriate.

Step 7: Time Now Calibration

This step assumes that the estimation model or process being used can be calibrated
by making adjustments to one or more calibration coefficients. We propose iteratively
adjusting each calibration coefficient with the goal of creating a plan that corresponds
with actual performance (BCWP) and actual expenditure (ACWP) to date. We propose
a reasonable test for this correspondence to be performance indices (BPI, CPI, SPI,
TPI) approaching unity. Practically speaking, we are creating a new plan that matches

October 24, 2005 Page 29 of 36 Rev D

what has already happened and uses established estimation relationships to predict
what is likely to happen from time now considering what has already happened up to
time now.

Step 8: Communicate the Results

Use an appropriate set of charts and reports to present the results of the forecasting
process. A chart that is particularly useful for this purpose is of the type shown in Figure
8.

Step 9: Re-Baseline the Project

If warranted by project expectations, goals, and commitments and upon approval by
appropriate authority, replace the current baseline with the current (new) estimate and
track against this new baseline.

Communicating Performance Measurement Information

PPMC Outputs

One of the primary goals of PPMC is to provide adequate supporting documentation
(charts and reports) to support the software project management process and to satisfy
stakeholder needs. Figure 8 through Figure 14 show prototypical examples of charts
and reports that can be used for such a purpose.

October 24, 2005 Page 30 of 36 Rev D

Figure 8: Prototype Performance Measures Tracking Chart

Figure 9: Prototype Performance Indices Tracking Chart

October 24, 2005 Page 31 of 36 Rev D

Figure 10: Prototype Status Indicators Chart

Figure 11: Prototype Schedule Plan versus Prediction Chart

October 24, 2005 Page 32 of 36 Rev D

Figure 12: Prototype Effort Plan versus Prediction Chart

October 24, 2005 Page 33 of 36 Rev D

Figure 13: Prototype Defects Tracking Chart

October 24, 2005 Page 34 of 36 Rev D

Figure 14: Prototype PPMC Report

Summary and Conclusion

Purpose Revisited
This paper has reviewed the fundamentals of software project management and of
Performance Measurement (including proposed extensions) and then examined a
proposed process called Parametric Project Monitoring and Control (PPMC) whereby
accepted algorithms currently used for software cost and schedule estimation during the
project planning process are incorporated into the forecasting and re-baselining
processes to yield a more-realistic time-range prediction of a project’s cost and duration.

Areas of Future Study
The following are suggested opportunities for improving PPMC:

Identify new measures and metrics that can provide better insight into project health and
status.

Investigate methods for automating the Performance-Based Forecasting and Re-
Baselining Process. Regarding the iterative calibration process, it might be possible to
develop a system of equations that combine the fundamental software estimation
equations with the equations for calculating Performance Measurement’s performance
indices such that the calibration coefficients could be resolved directly; i.e., avoiding the
iterative guessing process.

Develop new graphic and tabular representations of the measures and metrics data that
improve communicating a project’s health and status.

Investigate the idea of some sort of project diagnostic expert system that would
combine PPMC measures and metrics and provide a list of suggested potential project
problems that are indicated by the given values of these measures and metrics.

References
[1] CMMI® Product Team, Capability Maturity Model® Integration (CMMI™),

Version 1.1, Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2002.

[2] Halliday, D., Resnick, R., Physics: Parts 1 & 2, Third Edition, John Wiley &
Sons, New York, NY, 1997.

October 24, 2005 Page 35 of 36 Rev D

[3] Mish, F. (Editor in Chief), Merriam-Webster’s Collegiate Dictionary, Tenth
Edition, Merriam-Webster, Incorporated, Springfield, MA, 1999.

[4] Ross, M., “Managing Software Size,” Proc. Joint ISPA / SCEA 2003 Conference,
June 2003.

October 24, 2005 Page 36 of 36 Rev D

Biography
Michael A. Ross has over 30 years of practical experience in software engineering as a
developer, manager, process champion, consultant, instructor, and award-winning
international speaker.

Mr. Ross is currently the Chief Engineer of Galorath Incorporated, makers of the SEER
suite of estimation tools, where, for the past three years, he has been responsible for
the advancement and realization of the technology aspects of Galorath’s mission and
vision.

Prior to joining Galorath, Mr. Ross was Vice President of Education Services for
Quantitative Software Management, Inc. (makers of the SLIM suite of software
estimating tools). He was responsible for the development and delivery of all QSM
training. During his seven-year tenure with QSM, he served as one of the company’s
primary consultants and analysts working with Fortune 500 companies and government
agencies in the areas of software measurement, sizing, estimating, tracking,
forecasting, and benchmarking.

Mr. Ross, during 17 years with Honeywell Air Transport Systems (formerly Sperry Flight
Systems) and 2 years with Tracor Aerospace, developed or managed the development
of embedded software for avionics systems installed various commercial airplanes
including the Boeing 737-500, 757, 767, 777, the Douglas MD-11, the Lockheed L1011-
500, the British Aerospace BAe-146, the Airbus A320; and for expendable
countermeasures systems installed in various military aircraft and missiles. He also co-
founded Honeywell Air Transport Systems’ process improvement team (later to become
its SEPG), served as its focal for software project management process improvement,
and served as a Honeywell corporate SEI CMM assessor.

Mr. Ross did his undergraduate work at the United States Air Force Academy and
Arizona State University, receiving a Bachelor of Science in Computer Engineering. He
is a member of the Project Management Institute (PMI), the Institute of Electrical and
Electronics Engineers (IEEE), the International Function Points Users Group (IFPUG),
the International Society of Parametric Analysts (ISPA), the Society of Cost Estimating
and Analysis (SCEA), the Arizona Software Association, and the Phoenix area Software
Process Improvement Network.

