

Enterprise Process Integration within the Space and Airborne Systems Business Area of Raytheon

Linda Kovar and Deana Seigler

November 16, 2005

- Raytheon is an industry leader in defense and government electronics, space, information technology, technical services, and business aviation and special mission aircraft.
 - The company is divided into seven major business units
- Space and Airborne Systems (SAS) is one of the seven business units that make up Raytheon
 - Conglomeration of programs from various legacy defense companies such as Hughes Aircraft, Texas Instruments and Raytheon Company
 - 2004 Revenue of \$4.1 Billion
 - 13,000 employees
 - 4 geographic locations
 - El Segundo, CA
 - Goleta, CA
 - Texas
 - Mississippi

- Each location had their own set of processes, process improvement initiatives and goals
 - El Segundo had been previously assessed at CMMI Level 3 for Systems and Software Engineering
 - Texas had been previously assessed at CMMI Level 5 for Software Engineering and CMMI Level 3 for Systems Engineering
- At the beginning of 2004, there were three sets of processes being developed and maintained within SAS
 - Separate process groups working independently
 - Site specific
 - Discipline specific

Case for Action

- Increasing business need to share work between geographic locations
- Discipline-specific processes existed for Systems, Software, and Hardware Engineering
 - Across the sites we found we had separate but similar processes
 - As Hardware Engineering started down the process improvement journey, we realized many of the same processes would be needed
- Multiple CMMI appraisals would be needed and were planned due to the varying processes and goals

- In July 2004, Jack Kelble, SAS President, made the strategic decision to integrate development processes across SAS
 - El Segundo already had a process architecture called the Enterprise Management System (EMS)
 - Only the El Segundo processes were integrated into this architecture
- Goal was to achieve CMMI Level 5 for Systems and Software Engineering and CMMI Level 3 for Hardware Engineering in 2005
 - As part of this goal, all engineering development processes were to be merged and integrated into EMS
 - In addition, one CMMI Class A appraisal was to be conducted for the entire SAS organization

- Execute this enterprise process integration effort like a program
- Determine an approach that would allow SAS to integrate processes across the entire organization in a very short period of time
- Develop a proposal describing how to accomplish the goal and identifying what resources would be required

- Pull the "best of the best" processes from across SAS to form the SAS standard process
- Create discipline-independent processes
 whenever feasible

- Organize several teams to develop the plan to integrate the processes across the enterprise
 - Core Proposal Team
 - Numerous Mini-Teams
 - Management Review Team
- Create a unified Enterprise Process
 Group (EPG) for all sites and disciplines
 - Ensure representation from all sites on all teams and throughout the EPG Leadership Team
 - Reduce process improvement effort by maintaining only one set of processes and conducting a unified appraisal

Core Proposal Team

- Membership
 - Key process leaders from each site
- Responsibilities
 - Provide the overall roadmap for the proposal
 - Identify complete list of existing processes
 - Develop initial recommended list of discipline-independent processes
 - Divide the process list into numerous mini-teams by topic
 - Determine common terminology to be used for the SAS Directives
 - Procedure versus Directive
 - Work Instruction versus Procedure
 - Secure resources to work mini-team reviews
 - Establish process for mini-teams to review processes
 - Review recommendations and estimates generated by the mini-teams
 - Roll-up estimates and present plan to management

•

SAS Directive Structure

- **Policy:** Directive and establishes the commitment that cannot be tailored.
- Bulletins: Used to augment policy for a short time or for frequently changing needs.
- **Procedures:** Directive and may not be tailored. Contain detail on "What to do".
- Work Instructions: Directive and may be tailored. Contain detail on "How to do".
 - **Enablers:** Not directive. Enablers are provided to support implementation of Procedures and Work Instructions.
 - Enablers are samples, templates, checklists, etc. for what should be considered when performing a task.

avineon

Space and Airborne Systems

- Membership
 - Subject Matter Experts from each site for the various process areas
 - Multi-site representation was key to the success of the mini-teams
- Responsibilities
 - Meet (virtually) with the representatives from each site to review the existing processes
 - Develop a recommendation on the path forward for the specific
 - process area
 - Keep one site's existing process as is
 - Merge existing processes from all sites
 - Eliminate the process
 - Elevate the process to be discipline-independent

 Generate detailed Basis of Estimate (BOE) to document the effort required to accomplish the recommendation of the team

- One mini-team was assigned the Peer Review Process
 - Subject Matter Experts on the existing processes were identified
- Current State
 - SE Peer Review Directive and Procedure in Texas
 - SW Peer Review PRG and Procedure in Texas
 - Separate SE and SW Peer Review Work Instructions in El Segundo
 - Five enablers in Texas and three enablers in El Segundo
 - HW did not yet have a Peer Review process at either site
 - Defect Logger Tool (Access database) used in Texas and Integrated Project Reporting Tool (Excel spreadsheet) used in El Segundo
- Recommendation
 - Form one discipline-independent Peer Review process
 - Common definition of a defect and common set of codes for defect classification (type, reason and priority)
 - Common program phases for defect containment
 - Create an alternative, less formal process for Desk Checks
 - Deploy the Defect Logger Tool to all geographic locations

Management Review

- Membership
 - SAS President and VP of Engineering
 - Approve the budget for the plan
 - Functional line management
 - Approve the technical approach
- Responsibilities

- Review and approve the plan presented by the Core Proposal Team
- SAS President and VP of Engineering reviewed the budget and ability of the plan to meet the goal
- Functional line management reviewed the recommendations of the mini-teams to ensure they were aligned with the recommendations

© 2005, Raytheon Company. All rights reserved

Proposed Changes

Raytheon Space and Airborne Systems

Raytheon	RTN - 33.54 (+0.83) Space and Airborne Systems (SA								
SAS Home	Organization	Program Areas / Functions		Customer Focu	s	Processes / EMS	Tools & Resources		

Menu	The Space a	and Airborne Systems (SAS) Enterprise	SAS Documentation Li	inks					
Processes-EMS Home	Managemer IPDS. It is n				One SAS				
SAS EMS IPDP	Project Exe company's its common		EMS						
SAS EMS Glossary	Product Dev	Process Documents	Baseline	Add	Delete	Modify*			
<u>SAS Gates</u>	EMS exteni	Policies	1	0	0	0			
Document Mappings	documentat								
EMS CR Forms	Capability N	Procedures	13	3	0	26			
	This EMS w convenient a								
	and easily r what needs	Work Instructions	95	32	20	59			
Prog Areas/Functions	IPDS "stage								
=> Select Org <= ▼	The extensi work instruc	Enablers	81	101	9	39			
	enablers are								

* A document can be "modified" more than once eg. Driven by IPDP stage or discipline related

 A key goal of our process merger effort was to replace discipline-specific processes with discipline-independent ones wherever possible

- Discipline-independent processes are referred to as "common" processes
- Benefits include:
 - Reduces the number of processes to maintain
 - Facilitates common execution of process across all disciplines
 - Allows integrated teams to talk the same language

- Process Tailoring
 - Describes how programs will perform tailoring, including both discipline-independent and discipline-specific processes
- Program Planning
 - Created a process, called the Program Management Plan, for the program-level planning elements
 - Kept discipline-specific processes for details of planning requirements by discipline
 - Systems Engineering Management Plan
 - Hardware Development Plan
 - Software Development Plan
- Standardized on a 3-phase tailoring and planning approach for all disciplines

- Project Measurement & Analysis
 - Used to help the program establish their metrics plan
- Team of X
 - This is an interactive meeting between program personnel and line management to review program metrics, status, issues, processes

Integrated Management Review

- This is a periodic review with higher level management

that can involve more than one discipline

- Structured Decision Making
 - Process for making formal decisions that could have a significant impact to the program
- Risk and Opportunity Management
 - Describes how to identify, categorize and manage risks and opportunities for all disciplines

- Work Product Management and Stakeholder Involvement
 - One matrix that lists the program's work products, level of control for each, stakeholder involvement for each and designates which work products must be reviewed using the Peer Review process
- Cost Estimation
 - Originally thought to be disciple-specific, but later determined it could be discipline-independent
 - Still under development, but a new version to be piloted soon

- Project Teaming
 - Describes the establishment of integrated product teams
- Peer Review and Desk Check
 - Peer Review process meets the requirements of the CMMI model

- Desk Check process is a less formal process that can be used
- Gate Reviews
 - This is an independent review of the program at major phase transitions
- Objective Evaluation
 - Process and product audits by independent evaluators

- The plan of attack included unifying the various process groups across the business into a single Enterprise Process Group (EPG)
 - The new structure was referred to as the OneSAS EPG to make it obvious that we were unifying the process groups and the processes into one
 - Created a logo for the enterprise process integration effort

- The OneSAS EPG would include representation from all disciplines and sites and would be responsible for executing the process merger plan
 - A distributed team makes coordination and communication more difficult
 - The OneSAS EPG meets weekly via teleconference and Sametime
 - Meet face-to-face for all planning activities and once a month as a leadership team

 Implemented an Integrated Product Team (IPT) structure for process development and a Cross Product Team (CPT) structure for activities that cut across all IPTs.

EPG	Process	s Inte	gration T	ech	nical Dire	ecto	rs : Ro	be	ert Gonzalez	ar	nd John F	Pey	ton		
Linda Kovar, Program Manager		HDW IPT Martin Heer		SYS IPT Bosworth Perkowski		SW IPT Seigler Chacon		PM IPT Probst		CM/DM IPT Brantley		SCM IPT Holt		QA IPT O'Berry	
Enterprise Management System CPT Alcantar	IPCCB	Making) sure EMS/II	processes a PDS . Addre	re co ss is	nsistent ac sues related	ross d to p	disciplines, ac process compli		ss programs ar ice within CMM	nd v II in	with the arch Iterpretation	niteo Is.	sture	
Appraisal Coordination CPT De Cicco	Making sure data archiving and repositories are consistent across disciplines, across programs and with the architecture EMS/IPDS . Planning and collecting artifacts for appraisals														
Measurement and Analysis CPT Luke	·	Coordinat	ing co	nsistent met	rics a	across SAS.	Kee	ping track of b) Jus	iness needs an	nd t	ranslating th	nose	e to action-me	trics.
Learning CPT Adams	Making sure the training program is consistent across SAS organizations									E					
Process Improvement Rollout CPT Raymond	PIR	Making s le	ure pr ads fo	ocess rollou r deploying t	ts are	e consistent ocesses. P	acro	oss disciplines Im Contact Co		cross programs dination using t	s. C	Coordinate v Team of X	vith	IPT	

OneSAS EPG ConOps

- Developed concept of operations (ConOps) for the IPTs and CPTs to define the interactions between them
 - One generic ConOps for the discipline IPTs
 - Five specific ConOps for each of the CPTs

- In addition, the following ConOps were needed for specific tasks
 - Top-level EPG
 - Process Definition
 - Process Support
 - Integrated Process Change Control Board Change Process
 - Enterprise Management System Website
 - Process Improvement Roll-out
 - Artifact/Data Collection
 - Artifact Gap Closure

 Created a chart showing the inputs and outputs from the EPG to describe the services offered by the EPG

- The OneSAS EPG team was formed and worked very well together
 - Representation from each site and monthly face-to-face meetings were keys to our success

- All the discipline-independent processes discussed previously are released and are being used with the exception of Cost Estimation
 - Late decision to make Cost Estimation discipline-independent
- SAS Achieved CMMI Level 3 for Systems, Software and Hardware Engineering in August of 2005
 - This multi-site, multi-disciplined appraisal was the largest in scope for any business in Raytheon
 - It was the first CMMI appraisal to include Hardware

